June  2021, 41(6): 2653-2676. doi: 10.3934/dcds.2020379

Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case

1. 

School of Mathematics, Hefei University of Technology, Hefei 230009, China

2. 

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China

3. 

Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków, Poland

4. 

Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13, 200585 Craiova, Romania

* Corresponding author: Vicenţiu D. Răadulescu

Received  July 2020 Revised  September 2020 Published  June 2021 Early access  November 2020

Fund Project: B. Zhang was supported by the National Natural Science Foundation of China (No. 11871199), the Heilongjiang Province Postdoctoral Startup Foundation, PR China (LBH-Q18109), and the Cultivation Project of Young and Innovative Talents in Universities of Shandong Province. V.D. Răadulescu acknowledges the support through the Project MTM2017-85449-P of the DGISPI (Spain)

In this paper, we study the following coupled nonlocal system
$ \begin{equation*} \begin{cases} (-\Delta)^{s}u-\lambda_{1}u = \mu_{1}|u|^{\alpha}u+\beta|u|^{\frac{\alpha-2}{2}}u|v|^{\frac{\alpha+2}{2}} & \text{in} \ \ \mathbb{R}^{N},\\ (-\Delta)^{s}v-\lambda_{2}v = \mu_{2}|v|^{\alpha}v+\beta|u|^{\frac{\alpha+2}{2}}|v|^{\frac{\alpha-2}{2}}v& \text{in} \ \ \mathbb{R}^{N}, \end{cases} \end{equation*} $
satisfying the additional conditions
$ \int_{\mathbb{R}^{N}}u^{2}dx = b^{2}_{1}\ \text{and} \ \int_{\mathbb{R}^{N}}v^{2}dx = b^{2}_{2}, $
where
$ (-\Delta)^{s} $
is the fractional Laplacian,
$ 0<s<1 $
,
$ \mu_{1},\, \mu_{2}>0 $
,
$ N>2s $
, and
$ \frac{4s}{N}<\alpha\leq \frac{2s}{N-2s} $
. We are concerned with the attractive case, which corresponds to
$ \beta>0 $
. In the case of low perturbations of the coupling parameter, by using two-dimensional linking arguments, we show that there exists
$ \beta_{1}>0 $
such that when
$ 0<\beta<\beta_{1} $
, then the system has a positive radial solution. Next, in the case of high perturbations of the coupling parameter, we prove that there exists
$ \beta_{2}>0 $
such that the system has a mountain-pass type solution for all
$ \beta>\beta_{2} $
. These results correspond to low and high perturbations with respect to the values of the coupling parameter
$ \beta $
. This paper extends and complements the main results established in [2] for the particular case
$ N = 3 $
,
$ s = 1 $
,
$ \alpha = 2 $
.
Citation: Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2653-2676. doi: 10.3934/dcds.2020379
References:
[1]

B. BarriosE. ColoradoA. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[2]

T. BartschL. Jeanjean and N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on $\mathbb{R}^{3}$, J. Math. Pures Appl., 106 (2016), 583-614.  doi: 10.1016/j.matpur.2016.03.004.  Google Scholar

[3]

T. Bartsch and N. Soave, A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272 (2017), 4998-5037.  doi: 10.1016/j.jfa.2017.01.025.  Google Scholar

[4]

T. Bartsch and N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differential Equations, 58 (2019), 24 pp.  doi: 10.1007/s00526-018-1476-x.  Google Scholar

[5]

T. BartschX. Zhong and W. Zou, Normalized solutions for a coupled Schrödinger system, Math. Ann., (2020).  doi: 10.1007/s00208-020-02000-w.  Google Scholar

[6]

J. BellazziniL. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303-339.  doi: 10.1112/plms/pds072.  Google Scholar

[7]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

S. Chen, V.D. Rădulescu and X. Tang, Normalized solutions of nonautonomous Kirchhoff equations: Sub- and super-critical cases, Appl. Math. Optim., (2020). doi: 10.1007/s00245-020-09661-8.  Google Scholar

[10]

S. Cingolani and L. Jeanjean, Stationary waves with prescribed $L^2$-norm for the planar Schrödinger-Poisson system, SIAM J. Math. Anal., 51 (2019), 3533-3568.  doi: 10.1137/19M1243907.  Google Scholar

[11]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in ${\mathbb R}$, Acta Math., 210 (2013), 260-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[12]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[13]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar

[14] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, vol. 107, Cambridge University Press, 1993.  doi: 10.1017/CBO9780511551703.  Google Scholar
[15]

Z. GuoA. Luo and W. Zou, On critical systems involving fractional Laplacian, J. Math. Anal. Appl., 446 (2017), 681-706.  doi: 10.1016/j.jmaa.2016.08.069.  Google Scholar

[16]

L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equation, Nonlinear Anal., 28 (1997), 1633-1659.  doi: 10.1016/S0362-546X(96)00021-1.  Google Scholar

[17]

J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284-346.   Google Scholar

[18]

A. MelletS. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[19] G. Molica BisciV. Răadulescu and R. Servadei, Variational Methods for Nonlocal Fractional Equations, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.  Google Scholar
[20]

S. PengS. We and Q. Wang, Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent, J. Differential Equations, 263 (2017), 709-731.  doi: 10.1016/j.jde.2017.02.053.  Google Scholar

[21]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[23]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[24]

M. XiangB. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.  Google Scholar

[25]

M. XiangB. Zhang and V. Răadulescu, Superlinear Schrödinger-Kirchhoff type problems involving the fractional $p$-Laplacian and critical exponent, Adv. Nonlinear Anal., 9 (2020), 690-709.  doi: 10.1515/anona-2020-0021.  Google Scholar

[26]

M. ZhenJ. He and H. Xu, Critical system involving fractional Laplacian, Commun. Pure Appl. Anal., 18 (2019), 237-253.  doi: 10.3934/cpaa.2019013.  Google Scholar

[27]

M. ZhenJ. HeH. Xu and M. Yang, Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent, Bound. Value Probl., 96 (2018), 25 pp.  doi: 10.1186/s13661-018-1016-9.  Google Scholar

[28]

M. ZhenJ. HeH. Xu and M. Yang, Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent, Discrete Contin. Dyn. Syst., 39 (2019), 6523-6539.  doi: 10.3934/dcds.2019283.  Google Scholar

show all references

References:
[1]

B. BarriosE. ColoradoA. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[2]

T. BartschL. Jeanjean and N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on $\mathbb{R}^{3}$, J. Math. Pures Appl., 106 (2016), 583-614.  doi: 10.1016/j.matpur.2016.03.004.  Google Scholar

[3]

T. Bartsch and N. Soave, A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272 (2017), 4998-5037.  doi: 10.1016/j.jfa.2017.01.025.  Google Scholar

[4]

T. Bartsch and N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differential Equations, 58 (2019), 24 pp.  doi: 10.1007/s00526-018-1476-x.  Google Scholar

[5]

T. BartschX. Zhong and W. Zou, Normalized solutions for a coupled Schrödinger system, Math. Ann., (2020).  doi: 10.1007/s00208-020-02000-w.  Google Scholar

[6]

J. BellazziniL. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303-339.  doi: 10.1112/plms/pds072.  Google Scholar

[7]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[8]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[9]

S. Chen, V.D. Rădulescu and X. Tang, Normalized solutions of nonautonomous Kirchhoff equations: Sub- and super-critical cases, Appl. Math. Optim., (2020). doi: 10.1007/s00245-020-09661-8.  Google Scholar

[10]

S. Cingolani and L. Jeanjean, Stationary waves with prescribed $L^2$-norm for the planar Schrödinger-Poisson system, SIAM J. Math. Anal., 51 (2019), 3533-3568.  doi: 10.1137/19M1243907.  Google Scholar

[11]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in ${\mathbb R}$, Acta Math., 210 (2013), 260-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[12]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[13]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar

[14] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, vol. 107, Cambridge University Press, 1993.  doi: 10.1017/CBO9780511551703.  Google Scholar
[15]

Z. GuoA. Luo and W. Zou, On critical systems involving fractional Laplacian, J. Math. Anal. Appl., 446 (2017), 681-706.  doi: 10.1016/j.jmaa.2016.08.069.  Google Scholar

[16]

L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equation, Nonlinear Anal., 28 (1997), 1633-1659.  doi: 10.1016/S0362-546X(96)00021-1.  Google Scholar

[17]

J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284-346.   Google Scholar

[18]

A. MelletS. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.  doi: 10.1007/s00205-010-0354-2.  Google Scholar

[19] G. Molica BisciV. Răadulescu and R. Servadei, Variational Methods for Nonlocal Fractional Equations, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.  Google Scholar
[20]

S. PengS. We and Q. Wang, Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent, J. Differential Equations, 263 (2017), 709-731.  doi: 10.1016/j.jde.2017.02.053.  Google Scholar

[21]

P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.  Google Scholar

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[23]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[24]

M. XiangB. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.  Google Scholar

[25]

M. XiangB. Zhang and V. Răadulescu, Superlinear Schrödinger-Kirchhoff type problems involving the fractional $p$-Laplacian and critical exponent, Adv. Nonlinear Anal., 9 (2020), 690-709.  doi: 10.1515/anona-2020-0021.  Google Scholar

[26]

M. ZhenJ. He and H. Xu, Critical system involving fractional Laplacian, Commun. Pure Appl. Anal., 18 (2019), 237-253.  doi: 10.3934/cpaa.2019013.  Google Scholar

[27]

M. ZhenJ. HeH. Xu and M. Yang, Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent, Bound. Value Probl., 96 (2018), 25 pp.  doi: 10.1186/s13661-018-1016-9.  Google Scholar

[28]

M. ZhenJ. HeH. Xu and M. Yang, Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent, Discrete Contin. Dyn. Syst., 39 (2019), 6523-6539.  doi: 10.3934/dcds.2019283.  Google Scholar

[1]

Claudianor O. Alves, Geilson F. Germano. Existence of ground state solution and concentration of maxima for a class of indefinite variational problems. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2887-2906. doi: 10.3934/cpaa.2020126

[2]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[3]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[4]

Yanjun Liu, Chungen Liu. Ground state solution and multiple solutions to elliptic equations with exponential growth and singular term. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2819-2838. doi: 10.3934/cpaa.2020123

[5]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[7]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[8]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (4) : 813-826. doi: 10.3934/cpaa.2006.5.813

[9]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (1) : 71-84. doi: 10.3934/cpaa.2006.5.71

[10]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[11]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[12]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[13]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[14]

Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137

[15]

Kerstin Does. An evolution equation involving the normalized $P$-Laplacian. Communications on Pure & Applied Analysis, 2011, 10 (1) : 361-396. doi: 10.3934/cpaa.2011.10.361

[16]

Claudianor O. Alves, Giovany M. Figueiredo, Gaetano Siciliano. Ground state solutions for fractional scalar field equations under a general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2199-2215. doi: 10.3934/cpaa.2019099

[17]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[18]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[19]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[20]

Hangzhou Hu, Yuan Li, Dun Zhao. Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1899-1916. doi: 10.3934/dcdss.2021064

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (267)
  • HTML views (221)
  • Cited by (1)

[Back to Top]