\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case

  • * Corresponding author: Vicenţiu D. Răadulescu

    * Corresponding author: Vicenţiu D. Răadulescu

B. Zhang was supported by the National Natural Science Foundation of China (No. 11871199), the Heilongjiang Province Postdoctoral Startup Foundation, PR China (LBH-Q18109), and the Cultivation Project of Young and Innovative Talents in Universities of Shandong Province. V.D. Răadulescu acknowledges the support through the Project MTM2017-85449-P of the DGISPI (Spain)

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we study the following coupled nonlocal system

    $ \begin{equation*} \begin{cases} (-\Delta)^{s}u-\lambda_{1}u = \mu_{1}|u|^{\alpha}u+\beta|u|^{\frac{\alpha-2}{2}}u|v|^{\frac{\alpha+2}{2}} & \text{in} \ \ \mathbb{R}^{N},\\ (-\Delta)^{s}v-\lambda_{2}v = \mu_{2}|v|^{\alpha}v+\beta|u|^{\frac{\alpha+2}{2}}|v|^{\frac{\alpha-2}{2}}v& \text{in} \ \ \mathbb{R}^{N}, \end{cases} \end{equation*} $

    satisfying the additional conditions

    $ \int_{\mathbb{R}^{N}}u^{2}dx = b^{2}_{1}\ \text{and} \ \int_{\mathbb{R}^{N}}v^{2}dx = b^{2}_{2}, $

    where $ (-\Delta)^{s} $ is the fractional Laplacian, $ 0<s<1 $, $ \mu_{1},\, \mu_{2}>0 $, $ N>2s $, and $ \frac{4s}{N}<\alpha\leq \frac{2s}{N-2s} $. We are concerned with the attractive case, which corresponds to $ \beta>0 $. In the case of low perturbations of the coupling parameter, by using two-dimensional linking arguments, we show that there exists $ \beta_{1}>0 $ such that when $ 0<\beta<\beta_{1} $, then the system has a positive radial solution. Next, in the case of high perturbations of the coupling parameter, we prove that there exists $ \beta_{2}>0 $ such that the system has a mountain-pass type solution for all $ \beta>\beta_{2} $. These results correspond to low and high perturbations with respect to the values of the coupling parameter $ \beta $. This paper extends and complements the main results established in [2] for the particular case $ N = 3 $, $ s = 1 $, $ \alpha = 2 $.

    Mathematics Subject Classification: Primary: 35J50, 35B33, 35R11, 58E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] B. BarriosE. ColoradoA. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.  doi: 10.1016/j.jde.2012.02.023.
    [2] T. BartschL. Jeanjean and N. Soave, Normalized solutions for a system of coupled cubic Schrödinger equations on $\mathbb{R}^{3}$, J. Math. Pures Appl., 106 (2016), 583-614.  doi: 10.1016/j.matpur.2016.03.004.
    [3] T. Bartsch and N. Soave, A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems, J. Funct. Anal., 272 (2017), 4998-5037.  doi: 10.1016/j.jfa.2017.01.025.
    [4] T. Bartsch and N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differential Equations, 58 (2019), 24 pp.  doi: 10.1007/s00526-018-1476-x.
    [5] T. BartschX. Zhong and W. Zou, Normalized solutions for a coupled Schrödinger system, Math. Ann., (2020).  doi: 10.1007/s00208-020-02000-w.
    [6] J. BellazziniL. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303-339.  doi: 10.1112/plms/pds072.
    [7] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.
    [8] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.
    [9] S. Chen, V.D. Rădulescu and X. Tang, Normalized solutions of nonautonomous Kirchhoff equations: Sub- and super-critical cases, Appl. Math. Optim., (2020). doi: 10.1007/s00245-020-09661-8.
    [10] S. Cingolani and L. Jeanjean, Stationary waves with prescribed $L^2$-norm for the planar Schrödinger-Poisson system, SIAM J. Math. Anal., 51 (2019), 3533-3568.  doi: 10.1137/19M1243907.
    [11] R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in ${\mathbb R}$, Acta Math., 210 (2013), 260-318.  doi: 10.1007/s11511-013-0095-9.
    [12] R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.
    [13] P. Felmer and A. Quaas, Fundamental solutions and Liouville type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712-2738.  doi: 10.1016/j.aim.2010.09.023.
    [14] N. GhoussoubDuality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, vol. 107, Cambridge University Press, 1993.  doi: 10.1017/CBO9780511551703.
    [15] Z. GuoA. Luo and W. Zou, On critical systems involving fractional Laplacian, J. Math. Anal. Appl., 446 (2017), 681-706.  doi: 10.1016/j.jmaa.2016.08.069.
    [16] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equation, Nonlinear Anal., 28 (1997), 1633-1659.  doi: 10.1016/S0362-546X(96)00021-1.
    [17] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284-346. 
    [18] A. MelletS. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.  doi: 10.1007/s00205-010-0354-2.
    [19] G. Molica BisciV. Răadulescu and  R. ServadeiVariational Methods for Nonlocal Fractional Equations, Encyclopedia of Mathematics and its Applications, 162, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.
    [20] S. PengS. We and Q. Wang, Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent, J. Differential Equations, 263 (2017), 709-731.  doi: 10.1016/j.jde.2017.02.053.
    [21] P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1-22.  doi: 10.4171/RMI/879.
    [22] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.
    [23] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.
    [24] M. XiangB. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021-1041.  doi: 10.1016/j.jmaa.2014.11.055.
    [25] M. XiangB. Zhang and V. Răadulescu, Superlinear Schrödinger-Kirchhoff type problems involving the fractional $p$-Laplacian and critical exponent, Adv. Nonlinear Anal., 9 (2020), 690-709.  doi: 10.1515/anona-2020-0021.
    [26] M. ZhenJ. He and H. Xu, Critical system involving fractional Laplacian, Commun. Pure Appl. Anal., 18 (2019), 237-253.  doi: 10.3934/cpaa.2019013.
    [27] M. ZhenJ. HeH. Xu and M. Yang, Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent, Bound. Value Probl., 96 (2018), 25 pp.  doi: 10.1186/s13661-018-1016-9.
    [28] M. ZhenJ. HeH. Xu and M. Yang, Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent, Discrete Contin. Dyn. Syst., 39 (2019), 6523-6539.  doi: 10.3934/dcds.2019283.
  • 加载中
SHARE

Article Metrics

HTML views(1866) PDF downloads(373) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return