
-
Previous Article
A constructive approach to robust chaos using invariant manifolds and expanding cones
- DCDS Home
- This Issue
-
Next Article
A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation
Forward untangling and applications to the uniqueness problem for the continuity equation
1. | S.I.S.S.A., via Bonomea 265, 34136 Trieste, Italy |
2. | Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051, Basel, Switzerland |
We introduce the notion of forward untangled Lagrangian representation of a measure-divergence vector-measure $ \rho(1, {\mathit{\boldsymbol{b}}}) $, where $ \rho \in \mathcal{M}^+( \mathbb{R}^{d+1}) $ and $ {\mathit{\boldsymbol{b}}} \colon \mathbb{R}^{d+1} \to \mathbb{R}^d $ is a $ \rho $-integrable vector field with $ {\rm{div}}_{t,x}(\rho(1, {\mathit{\boldsymbol{b}}})) = \mu \in \mathcal M( \mathbb{R} \times \mathbb{R}^d) $: forward untangling formalizes the notion of forward uniqueness in the language of Lagrangian representations. We identify local conditions for a Lagrangian representation to be forward untangled, and we show how to derive global forward untangling from such local assumptions. We then show how to reduce the PDE $ {\rm{div}}_{t,x}(\rho(1, {\mathit{\boldsymbol{b}}})) = \mu $ on a partition of $ \mathbb{R}^+ \times \mathbb{R}^d $ obtained concatenating the curves seen by the Lagrangian representation. As an application, we recover known well posedeness results for the flow of monotone vector fields and for the associated continuity equation.
References:
[1] |
G. Alberti, S. Bianchini and G. Crippa,
Structure of level sets and Sard-type properties of Lipschitz maps, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 863-902.
|
[2] |
G. Alberti, S. Bianchini and G. Crippa,
A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc. (JEMS), 16 (2014), 201-234.
doi: 10.4171/JEMS/431. |
[3] |
L. Ambrosio,
Transport equation and Cauchy problem for ${\rm{BV}}$ vector fields, Inventiones Mathematicae, 158 (2004), 227-260.
doi: 10.1007/s00222-004-0367-2. |
[4] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. |
[5] |
S. Bianchini and P. Bonicatto, Failure of the chain rule in the non steady two-dimensional setting, Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg, 33-60, Springer Optim. Appl., 135, Springer, Cham, 2018. |
[6] |
S. Bianchini and P. Bonicatto,
A uniqueness result for the decomposition of vector fields in $\Bbb R^d$, Invent. Math., 220 (2020), 255-393.
doi: 10.1007/s00222-019-00928-8. |
[7] |
S. Bianchini and M. Gloyer,
An estimate on the flow generated by monotone operators, Comm. Partial Differential Equations, 36 (2011), 777-796.
doi: 10.1080/03605302.2010.534224. |
[8] |
S. Bianchini and A. Stavitskiy, Forward untangling in metric measure spaces and applications., Google Scholar |
[9] |
P. Bonicatto, Untangling of Trajectories for non-Smooth Vector Fields and Bressan's Compactness Conjecture, PhD thesis, SISSA, 2017. Google Scholar |
[10] |
F. Bouchut and G. Crippa,
Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., 10 (2013), 235-282.
doi: 10.1142/S0219891613500100. |
[11] |
G. Crippa, C. Nobili, C. Seis and S. Spirito, Eulerian and Lagrangian solutions to the continuity and Euler equations with $L^1$ vorticity, SIAM J. Math. Anal., 49 (2017), 3973-3998
doi: 10.1137/17M1130988. |
[12] |
H. G. Kellerer,
Duality theorems for marginal problems, Z. Wahrsch. Verw. Gebiete, 67 (1984), 399-432.
doi: 10.1007/BF00532047. |
[13] |
H. Royden and P. Fitzpatrick, Real Analysis, Prentice Hall, 2010, https://books.google.it/books?id=0Y5fAAAACAAJ. Google Scholar |
[14] |
S. K. Smirnov,
Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents, St. Petersburg Math. J., 5 (1994), 841-867.
|
[15] |
S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, Springer, 1998, https://books.google.it/books?id=FhYGYJtMwcUC.
doi: 10.1007/978-3-642-85473-6. |
show all references
References:
[1] |
G. Alberti, S. Bianchini and G. Crippa,
Structure of level sets and Sard-type properties of Lipschitz maps, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 863-902.
|
[2] |
G. Alberti, S. Bianchini and G. Crippa,
A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc. (JEMS), 16 (2014), 201-234.
doi: 10.4171/JEMS/431. |
[3] |
L. Ambrosio,
Transport equation and Cauchy problem for ${\rm{BV}}$ vector fields, Inventiones Mathematicae, 158 (2004), 227-260.
doi: 10.1007/s00222-004-0367-2. |
[4] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. |
[5] |
S. Bianchini and P. Bonicatto, Failure of the chain rule in the non steady two-dimensional setting, Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg, 33-60, Springer Optim. Appl., 135, Springer, Cham, 2018. |
[6] |
S. Bianchini and P. Bonicatto,
A uniqueness result for the decomposition of vector fields in $\Bbb R^d$, Invent. Math., 220 (2020), 255-393.
doi: 10.1007/s00222-019-00928-8. |
[7] |
S. Bianchini and M. Gloyer,
An estimate on the flow generated by monotone operators, Comm. Partial Differential Equations, 36 (2011), 777-796.
doi: 10.1080/03605302.2010.534224. |
[8] |
S. Bianchini and A. Stavitskiy, Forward untangling in metric measure spaces and applications., Google Scholar |
[9] |
P. Bonicatto, Untangling of Trajectories for non-Smooth Vector Fields and Bressan's Compactness Conjecture, PhD thesis, SISSA, 2017. Google Scholar |
[10] |
F. Bouchut and G. Crippa,
Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., 10 (2013), 235-282.
doi: 10.1142/S0219891613500100. |
[11] |
G. Crippa, C. Nobili, C. Seis and S. Spirito, Eulerian and Lagrangian solutions to the continuity and Euler equations with $L^1$ vorticity, SIAM J. Math. Anal., 49 (2017), 3973-3998
doi: 10.1137/17M1130988. |
[12] |
H. G. Kellerer,
Duality theorems for marginal problems, Z. Wahrsch. Verw. Gebiete, 67 (1984), 399-432.
doi: 10.1007/BF00532047. |
[13] |
H. Royden and P. Fitzpatrick, Real Analysis, Prentice Hall, 2010, https://books.google.it/books?id=0Y5fAAAACAAJ. Google Scholar |
[14] |
S. K. Smirnov,
Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents, St. Petersburg Math. J., 5 (1994), 841-867.
|
[15] |
S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, Springer, 1998, https://books.google.it/books?id=FhYGYJtMwcUC.
doi: 10.1007/978-3-642-85473-6. |


[1] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[2] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[3] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[4] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[5] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[6] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[7] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[8] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[9] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[10] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[11] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[12] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[13] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[14] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[15] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[16] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[17] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[18] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[19] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[20] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]