doi: 10.3934/dcds.2020384

Forward untangling and applications to the uniqueness problem for the continuity equation

1. 

S.I.S.S.A., via Bonomea 265, 34136 Trieste, Italy

2. 

Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051, Basel, Switzerland

* Corresponding author

Received  May 2020 Published  November 2020

Fund Project: The work of the second author was supported by ERC Starting Grant 676675 (FLIRT)

We introduce the notion of forward untangled Lagrangian representation of a measure-divergence vector-measure $ \rho(1, {\mathit{\boldsymbol{b}}}) $, where $ \rho \in \mathcal{M}^+( \mathbb{R}^{d+1}) $ and $ {\mathit{\boldsymbol{b}}} \colon \mathbb{R}^{d+1} \to \mathbb{R}^d $ is a $ \rho $-integrable vector field with $ {\rm{div}}_{t,x}(\rho(1, {\mathit{\boldsymbol{b}}})) = \mu \in \mathcal M( \mathbb{R} \times \mathbb{R}^d) $: forward untangling formalizes the notion of forward uniqueness in the language of Lagrangian representations. We identify local conditions for a Lagrangian representation to be forward untangled, and we show how to derive global forward untangling from such local assumptions. We then show how to reduce the PDE $ {\rm{div}}_{t,x}(\rho(1, {\mathit{\boldsymbol{b}}})) = \mu $ on a partition of $ \mathbb{R}^+ \times \mathbb{R}^d $ obtained concatenating the curves seen by the Lagrangian representation. As an application, we recover known well posedeness results for the flow of monotone vector fields and for the associated continuity equation.

Citation: Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020384
References:
[1]

G. AlbertiS. Bianchini and G. Crippa, Structure of level sets and Sard-type properties of Lipschitz maps, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 863-902.   Google Scholar

[2]

G. AlbertiS. Bianchini and G. Crippa, A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc. (JEMS), 16 (2014), 201-234.  doi: 10.4171/JEMS/431.  Google Scholar

[3]

L. Ambrosio, Transport equation and Cauchy problem for ${\rm{BV}}$ vector fields, Inventiones Mathematicae, 158 (2004), 227-260.  doi: 10.1007/s00222-004-0367-2.  Google Scholar

[4]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.  Google Scholar

[5]

S. Bianchini and P. Bonicatto, Failure of the chain rule in the non steady two-dimensional setting, Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg, 33-60, Springer Optim. Appl., 135, Springer, Cham, 2018.  Google Scholar

[6]

S. Bianchini and P. Bonicatto, A uniqueness result for the decomposition of vector fields in $\Bbb R^d$, Invent. Math., 220 (2020), 255-393.  doi: 10.1007/s00222-019-00928-8.  Google Scholar

[7]

S. Bianchini and M. Gloyer, An estimate on the flow generated by monotone operators, Comm. Partial Differential Equations, 36 (2011), 777-796.  doi: 10.1080/03605302.2010.534224.  Google Scholar

[8]

S. Bianchini and A. Stavitskiy, Forward untangling in metric measure spaces and applications., Google Scholar

[9]

P. Bonicatto, Untangling of Trajectories for non-Smooth Vector Fields and Bressan's Compactness Conjecture, PhD thesis, SISSA, 2017. Google Scholar

[10]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., 10 (2013), 235-282.  doi: 10.1142/S0219891613500100.  Google Scholar

[11]

G. Crippa, C. Nobili, C. Seis and S. Spirito, Eulerian and Lagrangian solutions to the continuity and Euler equations with $L^1$ vorticity, SIAM J. Math. Anal., 49 (2017), 3973-3998 doi: 10.1137/17M1130988.  Google Scholar

[12]

H. G. Kellerer, Duality theorems for marginal problems, Z. Wahrsch. Verw. Gebiete, 67 (1984), 399-432.  doi: 10.1007/BF00532047.  Google Scholar

[13]

H. Royden and P. Fitzpatrick, Real Analysis, Prentice Hall, 2010, https://books.google.it/books?id=0Y5fAAAACAAJ. Google Scholar

[14]

S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents, St. Petersburg Math. J., 5 (1994), 841-867.   Google Scholar

[15]

S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, Springer, 1998, https://books.google.it/books?id=FhYGYJtMwcUC. doi: 10.1007/978-3-642-85473-6.  Google Scholar

show all references

References:
[1]

G. AlbertiS. Bianchini and G. Crippa, Structure of level sets and Sard-type properties of Lipschitz maps, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 863-902.   Google Scholar

[2]

G. AlbertiS. Bianchini and G. Crippa, A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc. (JEMS), 16 (2014), 201-234.  doi: 10.4171/JEMS/431.  Google Scholar

[3]

L. Ambrosio, Transport equation and Cauchy problem for ${\rm{BV}}$ vector fields, Inventiones Mathematicae, 158 (2004), 227-260.  doi: 10.1007/s00222-004-0367-2.  Google Scholar

[4]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.  Google Scholar

[5]

S. Bianchini and P. Bonicatto, Failure of the chain rule in the non steady two-dimensional setting, Current Research in Nonlinear Analysis: In Honor of Haim Brezis and Louis Nirenberg, 33-60, Springer Optim. Appl., 135, Springer, Cham, 2018.  Google Scholar

[6]

S. Bianchini and P. Bonicatto, A uniqueness result for the decomposition of vector fields in $\Bbb R^d$, Invent. Math., 220 (2020), 255-393.  doi: 10.1007/s00222-019-00928-8.  Google Scholar

[7]

S. Bianchini and M. Gloyer, An estimate on the flow generated by monotone operators, Comm. Partial Differential Equations, 36 (2011), 777-796.  doi: 10.1080/03605302.2010.534224.  Google Scholar

[8]

S. Bianchini and A. Stavitskiy, Forward untangling in metric measure spaces and applications., Google Scholar

[9]

P. Bonicatto, Untangling of Trajectories for non-Smooth Vector Fields and Bressan's Compactness Conjecture, PhD thesis, SISSA, 2017. Google Scholar

[10]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyperbolic Differ. Equ., 10 (2013), 235-282.  doi: 10.1142/S0219891613500100.  Google Scholar

[11]

G. Crippa, C. Nobili, C. Seis and S. Spirito, Eulerian and Lagrangian solutions to the continuity and Euler equations with $L^1$ vorticity, SIAM J. Math. Anal., 49 (2017), 3973-3998 doi: 10.1137/17M1130988.  Google Scholar

[12]

H. G. Kellerer, Duality theorems for marginal problems, Z. Wahrsch. Verw. Gebiete, 67 (1984), 399-432.  doi: 10.1007/BF00532047.  Google Scholar

[13]

H. Royden and P. Fitzpatrick, Real Analysis, Prentice Hall, 2010, https://books.google.it/books?id=0Y5fAAAACAAJ. Google Scholar

[14]

S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents, St. Petersburg Math. J., 5 (1994), 841-867.   Google Scholar

[15]

S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, Springer, 1998, https://books.google.it/books?id=FhYGYJtMwcUC. doi: 10.1007/978-3-642-85473-6.  Google Scholar

Figure 1.  Two curves $ \gamma,\gamma' $ with $ (\gamma, \gamma') \in NF $ and visual depiction of the exchanging map $ \tilde{\gamma}_{\gamma'} $
Figure 2.  Concatenated families of trajectories and an example of set $ F^t_x $
[1]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[2]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[3]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[11]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[15]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[16]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[17]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (8)
  • HTML views (31)
  • Cited by (0)

Other articles
by authors

[Back to Top]