[1]
|
D. G. Aronson, L. A. Caffarelli and S. Kamin, How an initially stationary interface begins to move in porous medium flow, SIAM J. Math. Anal., 14 (1983), 639-658.
doi: 10.1137/0514049.
|
[2]
|
V. Barbu, G. Da Prato and M. Röckner, Stochastic Porous Media Equations, Lecture Notes in Mathematics, vol. 2163, Springer, Cham, 2016.
doi: 10.1007/978-3-319-41069-2.
|
[3]
|
V. Barbu, G. Da Prato and M. Röckner, Existence and uniqueness of nonnegative solutions to the stochastic porous media equations, Indiana Univ. Math. J., 57 (2008), 187-211.
doi: 10.1512/iumj.2008.57.3241.
|
[4]
|
V. Barbu and M. Röckner, Localization of solutions to stochastic porous media equations: Finite speed of propagation, Electron. J. Probab., 17 (2012), 1-11.
doi: 10.1214/EJP.v17-1768.
|
[5]
|
D. Breit, E. Feireisl and M. Hofmanová, Incompressible limit for compressible fluids with stochastic forcing, Arch. Ration. Mech. Anal., 222 (2016), 895-926.
doi: 10.1007/s00205-016-1014-y.
|
[6]
|
Z. Brzeźniak, W. Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310.
doi: 10.1016/j.nonrwa.2013.12.005.
|
[7]
|
Z. Brzeźniak and M. Ondreját, Strong solutions to stochastic wave equations with values in Riemannian manifolds, J. Funct. Anal., 253 (2007), 449-481.
doi: 10.1016/j.jfa.2007.03.034.
|
[8]
|
G. Da Prato, M. Röckner, B. Rozovskii and F. Wang, Strong solutions of stochastic generalized porous media equations: Existence, uniqueness, and ergodicity, Comm. Partial Differential Equations, 31 (2006), 277-291.
doi: 10.1080/03605300500357998.
|
[9]
|
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., vol. 44, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.
|
[10]
|
K. Dareiotis, M. Gerencscér and B. Gess, Entropy solutions for stochastic porous media equations, J. Differential Equations, 266 (2019), 3732-3763.
doi: 10.1016/j.jde.2018.09.012.
|
[11]
|
K. Dareiotis and B. Gess, Well-posedness of nonlinear diffusion equations with nonlinear conservative noise, preprint, arXiv: 1811.08356v2.
|
[12]
|
B. Davidovitch, E. Moro and H. Stone, Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations, Phys. Rev. Lett., 95 (2005), 244505.
doi: 10.1103/PhysRevLett.95.244505.
|
[13]
|
K. C. Djie, On Upper Bounds for Waiting Times for Doubly Nonlinear Parabolic Equations, Ph.D thesis, Rheinisch-Westfälische Technische Hochschule Aachen, 2008.
|
[14]
|
B. Fehrman and B. Gess, Path-by-path well-posedness of nonlinear diffusion equations with multiplicative noise, preprint, arXiv: 1807.04230.
|
[15]
|
B. Fehrman and B. Gess, Well-posedness of nonlinear diffusion equations with nonlinear conservative noise, Arch. Ration. Mech. Anal., 233 (2019), 249-322.
doi: 10.1007/s00205-019-01357-w.
|
[16]
|
J. Fischer and G. Grün, Finite speed of propagation and waiting times for the stochastic porous medium equation: A unifying approach, SIAM J. Math. Anal., 47 (2015), 825-854.
doi: 10.1137/140960578.
|
[17]
|
J. Fischer and G. Grün, Existence of positive solutions to stochastic thin-film equations, SIAM J. Math. Anal., 50 (2018), 411-455.
doi: 10.1137/16M1098796.
|
[18]
|
F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467.
|
[19]
|
B. Gess, Strong solutions for stochastic partial differential equations of gradient type, J. Funct. Anal., 263 (2012), 2355-2383.
doi: 10.1016/j.jfa.2012.07.001.
|
[20]
|
B. Gess, Finite speed of propagation for stochastic porous media equations, SIAM J. Math. Anal., 45 (2013), 2734-2766.
doi: 10.1137/120894713.
|
[21]
|
L. Giacomelli, R. Dal Passo and A. Shishkov, The thin film equation with nonlinear diffusion, Comm. Partial Differential Equations, 26 (2001), 1509-1557.
|
[22]
|
L. Giacomelli and G. Grün, Lower bounds on waiting times for degenerate parabolic equations and systems, Interfaces Free Bound., 8 (2006), 111-129.
doi: 10.4171/IFB/137.
|
[23]
|
H. Grillmeier and G. Grün, Nonnegativity preserving convergent schemes for stochastic porous-medium equations, Math. Comp., 88 (2019), 1021-1059.
doi: 10.1090/mcom/3372.
|
[24]
|
G. Grün, K. Mecke and M. Rauscher, Thin-film flow influenced by thermal noise, J. Stat. Phys., 122 (2006), 1261-1291.
doi: 10.1007/s10955-006-9028-8.
|
[25]
|
G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math., 87 (2000), 113-152.
doi: 10.1007/s002110000197.
|
[26]
|
M. Hofmanová, M. Röger and M. von Renesse, Weak solutions for a stochastic mean curvature flow of two-dimensional graphs, Prob. Theory and Related Fields, 168 (2017), 373-408.
doi: 10.1007/s00440-016-0713-5.
|
[27]
|
M. Hofmanová and J. Seidler, On weak solutions of stochastic differential equations, Stoch. Anal. Appl., 30 (2012), 100-121.
doi: 10.1080/07362994.2012.628916.
|
[28]
|
A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces, Theory Probab. Appl., 42 (1997), 167-174.
doi: 10.4213/tvp1769.
|
[29]
|
I. Karatzas and S. E. Shreve, Brownian motion, in Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1988, 47–127.
doi: 10.1007/978-1-4684-0302-2_2.
|
[30]
|
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, Cham, 2015.
doi: 10.1007/978-3-319-22354-4.
|
[31]
|
J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.
|
[32]
|
J. L. Vázquez, The Porous-Medium Equation. Mathematical Theory, The Clarendon Press, Oxford University Press, Oxford, 2007.
|