June  2021, 41(6): 2873-2890. doi: 10.3934/dcds.2020389

Approximation properties of Lüroth expansions

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

School of Science, Wuhan University of Technology, Wuhan 430074, China

* Corresponding author: Qinglong Zhou

Received  April 2020 Revised  September 2020 Published  June 2021 Early access  December 2020

For
$ x\in[0,1), $
let
$ [d_{1}(x),d_{2}(x),\ldots] $
be its Lüroth expansion and
$ \big\{\frac{p_{n}(x)}{q_{n}(x)}, n\geq 1\big\} $
be the sequence of convergents of
$ x. $
In this paper, we study the Jarník-like set of real numbers which can be well approximated by infinitely many of their convergents in the Lüroth expansion
$ \colon $
$ W(\psi) = \{x\in[0,1)\colon |xq_{n}(x)-p_{n}(x)|<\psi(n) \text{ for infinitely many } n\in \mathbb{N}\}, $
where
$ \psi\colon \mathbb{R}\to (0,\frac{1}{2}] $
is a positive function. We completely determine the Hausdorff dimension of
$ W(\psi). $
Citation: Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389
References:
[1]

J. BarrionuevoR. M. BurtonK. Dajani and C. Kraaikamp, Ergodic properties of generalized Lüroth series, Acta Arith., 4 (1996), 311-327.  doi: 10.4064/aa-74-4-311-327.  Google Scholar

[2]

J. Barral and S. Seuret, A localized Jarník-Besicovitch theorem, Adv. Math., 4 (2011), 3191-3215.  doi: 10.1016/j.aim.2010.10.011.  Google Scholar

[3]

L. Barreira and G. Iommi, Frequency of digits in the Lüroth expansion, J. Number Theory, 6 (2009), 1479-1490.  doi: 10.1016/j.jnt.2008.06.002.  Google Scholar

[4]

V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math., 3 (2006), 971-992.  doi: 10.4007/annals.2006.164.971.  Google Scholar

[5]

C. Y. CaoJ. Wu and Z. L. Zhang, The efficiency of approximating real numbers by Lüroth expansion, Czechoslovak Math. J., 2 (2013), 497-513.  doi: 10.1007/s10587-013-0033-1.  Google Scholar

[6]

Y. H. ChenY. Sun and X. J. Zhao, A localized uniformly Jarník set in continued fractions, Acta Arith., 167 (2015), 267-280.  doi: 10.4064/aa167-3-5.  Google Scholar

[7]

K. Dajani and C. Kraaikamp, On approximation by Lüroth series, J. Théor. Nombres Bordeaux, 8 (1996), 331-346.  doi: 10.5802/jtnb.172.  Google Scholar

[8]

R. J. Duffin and A. C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J., 8 (1941), 243-255.  doi: 10.1215/S0012-7094-41-00818-9.  Google Scholar

[9]

A. H. FanL. M. LiaoJ. H. Ma and B. W. Wang, Dimension of Besicovitch-Eggleston sets in countable symbolic space, Nonlinearity, 23 (2010), 1185-1197.  doi: 10.1088/0951-7715/23/5/009.  Google Scholar

[10]

K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, 3$^{rd}$ edition, John Wiley & Sons, Ltd., Chichester, 2014.  Google Scholar

[11]

I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc., 37 (1941), 199-228.  doi: 10.1017/S030500410002171X.  Google Scholar

[12]

J. Galambos, Representations of real numbers by infinite series, Lecture Notes in Mathematics, vol. 502, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[13]

M. HussainD. KleinbockN. Wadleigh and B. W. Wang, Hausdorff measure of sets of Dirichlet non-improvable numbers, Mathematika, 64 (2018), 502-518.  doi: 10.1112/S0025579318000074.  Google Scholar

[14]

V. Jarník, Zur Theorie der diophantischen Approximationen, Monatsh. Math. Phys., 39 (1932), 403-438.  doi: 10.1007/BF01699082.  Google Scholar

[15]

A. Ya. Khintchine, Einige Sätzeber Kettenbrche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92 (1924), 115-125.  doi: 10.1007/BF01448437.  Google Scholar

[16]

A. Ya. Khintchine, Continued Fractions, P. Noordhoff, Ltd., Groningen, 1963.  Google Scholar

[17]

D. Koukoulopoulos and J. Maynard, On the Duffin-Schaeffer conjecture, Ann. of Math., 192 (2020), 251-307.  doi: 10.4007/annals.2020.192.1.5.  Google Scholar

[18]

J. Lüroth, Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Ann., 21 (1883), 411-423.  doi: 10.1007/BF01443883.  Google Scholar

[19]

R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.  doi: 10.1112/plms/s3-73.1.105.  Google Scholar

[20]

L. M. Shen, Hausdorff dimension of the set concerning with Borel-Bernstein theory in Lüroth expansions, J. Korean Math. Soc., 54 (2017), 1301-1316.  doi: 10.4134/JKMS.j160501.  Google Scholar

[21]

W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. doi: 3-540-09762-7.  Google Scholar

[22]

B. Tan and Q. L. Zhou, The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., 478 (2019), 229-235.  doi: 10.1016/j.jmaa.2019.05.029.  Google Scholar

[23]

B. Tan and Q.L. Zhou, Dimension theory of the product of partial quotients in Lüroth expansions, Int. J. Number Theory, (2020). doi: 10.1142/S1793042121500287.  Google Scholar

[24]

B. W. Wang and J. Wu, Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math., 5 (2008), 1319-1339.  doi: 10.1016/j.aim.2008.03.006.  Google Scholar

[25]

B. W. WangJ. Wu and J. Xu, A generalization of the Jarník-Besicovitch theorem by continued fractions, Ergodic Theory Dynam. Systems, 36 (2016), 1278-1306.  doi: 10.1017/etds.2014.98.  Google Scholar

[26]

S. K. Wang and J. Xu, On the Lebesgue measure of sum-level sets for Lüroth expansion, J. Math. Anal. Appl., 374 (2011), 197-200.  doi: 10.1016/j.jmaa.2010.08.047.  Google Scholar

show all references

References:
[1]

J. BarrionuevoR. M. BurtonK. Dajani and C. Kraaikamp, Ergodic properties of generalized Lüroth series, Acta Arith., 4 (1996), 311-327.  doi: 10.4064/aa-74-4-311-327.  Google Scholar

[2]

J. Barral and S. Seuret, A localized Jarník-Besicovitch theorem, Adv. Math., 4 (2011), 3191-3215.  doi: 10.1016/j.aim.2010.10.011.  Google Scholar

[3]

L. Barreira and G. Iommi, Frequency of digits in the Lüroth expansion, J. Number Theory, 6 (2009), 1479-1490.  doi: 10.1016/j.jnt.2008.06.002.  Google Scholar

[4]

V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math., 3 (2006), 971-992.  doi: 10.4007/annals.2006.164.971.  Google Scholar

[5]

C. Y. CaoJ. Wu and Z. L. Zhang, The efficiency of approximating real numbers by Lüroth expansion, Czechoslovak Math. J., 2 (2013), 497-513.  doi: 10.1007/s10587-013-0033-1.  Google Scholar

[6]

Y. H. ChenY. Sun and X. J. Zhao, A localized uniformly Jarník set in continued fractions, Acta Arith., 167 (2015), 267-280.  doi: 10.4064/aa167-3-5.  Google Scholar

[7]

K. Dajani and C. Kraaikamp, On approximation by Lüroth series, J. Théor. Nombres Bordeaux, 8 (1996), 331-346.  doi: 10.5802/jtnb.172.  Google Scholar

[8]

R. J. Duffin and A. C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J., 8 (1941), 243-255.  doi: 10.1215/S0012-7094-41-00818-9.  Google Scholar

[9]

A. H. FanL. M. LiaoJ. H. Ma and B. W. Wang, Dimension of Besicovitch-Eggleston sets in countable symbolic space, Nonlinearity, 23 (2010), 1185-1197.  doi: 10.1088/0951-7715/23/5/009.  Google Scholar

[10]

K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, 3$^{rd}$ edition, John Wiley & Sons, Ltd., Chichester, 2014.  Google Scholar

[11]

I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc., 37 (1941), 199-228.  doi: 10.1017/S030500410002171X.  Google Scholar

[12]

J. Galambos, Representations of real numbers by infinite series, Lecture Notes in Mathematics, vol. 502, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[13]

M. HussainD. KleinbockN. Wadleigh and B. W. Wang, Hausdorff measure of sets of Dirichlet non-improvable numbers, Mathematika, 64 (2018), 502-518.  doi: 10.1112/S0025579318000074.  Google Scholar

[14]

V. Jarník, Zur Theorie der diophantischen Approximationen, Monatsh. Math. Phys., 39 (1932), 403-438.  doi: 10.1007/BF01699082.  Google Scholar

[15]

A. Ya. Khintchine, Einige Sätzeber Kettenbrche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92 (1924), 115-125.  doi: 10.1007/BF01448437.  Google Scholar

[16]

A. Ya. Khintchine, Continued Fractions, P. Noordhoff, Ltd., Groningen, 1963.  Google Scholar

[17]

D. Koukoulopoulos and J. Maynard, On the Duffin-Schaeffer conjecture, Ann. of Math., 192 (2020), 251-307.  doi: 10.4007/annals.2020.192.1.5.  Google Scholar

[18]

J. Lüroth, Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Ann., 21 (1883), 411-423.  doi: 10.1007/BF01443883.  Google Scholar

[19]

R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.  doi: 10.1112/plms/s3-73.1.105.  Google Scholar

[20]

L. M. Shen, Hausdorff dimension of the set concerning with Borel-Bernstein theory in Lüroth expansions, J. Korean Math. Soc., 54 (2017), 1301-1316.  doi: 10.4134/JKMS.j160501.  Google Scholar

[21]

W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. doi: 3-540-09762-7.  Google Scholar

[22]

B. Tan and Q. L. Zhou, The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., 478 (2019), 229-235.  doi: 10.1016/j.jmaa.2019.05.029.  Google Scholar

[23]

B. Tan and Q.L. Zhou, Dimension theory of the product of partial quotients in Lüroth expansions, Int. J. Number Theory, (2020). doi: 10.1142/S1793042121500287.  Google Scholar

[24]

B. W. Wang and J. Wu, Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math., 5 (2008), 1319-1339.  doi: 10.1016/j.aim.2008.03.006.  Google Scholar

[25]

B. W. WangJ. Wu and J. Xu, A generalization of the Jarník-Besicovitch theorem by continued fractions, Ergodic Theory Dynam. Systems, 36 (2016), 1278-1306.  doi: 10.1017/etds.2014.98.  Google Scholar

[26]

S. K. Wang and J. Xu, On the Lebesgue measure of sum-level sets for Lüroth expansion, J. Math. Anal. Appl., 374 (2011), 197-200.  doi: 10.1016/j.jmaa.2010.08.047.  Google Scholar

[1]

Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129-138. doi: 10.3934/jmd.2008.2.129

[2]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[3]

Chao Ma, Baowei Wang, Jun Wu. Diophantine approximation of the orbits in topological dynamical systems. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2455-2471. doi: 10.3934/dcds.2019104

[4]

Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008

[5]

Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete & Continuous Dynamical Systems, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591

[6]

Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete & Continuous Dynamical Systems, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503

[7]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[8]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[9]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[10]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[11]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[12]

Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098

[13]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[14]

Vanderlei Horita, Marcelo Viana. Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms. Discrete & Continuous Dynamical Systems, 2005, 13 (5) : 1125-1152. doi: 10.3934/dcds.2005.13.1125

[15]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[16]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete & Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[17]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[18]

Aline Cerqueira, Carlos Matheus, Carlos Gustavo Moreira. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra. Journal of Modern Dynamics, 2018, 12: 151-174. doi: 10.3934/jmd.2018006

[19]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[20]

Davit Karagulyan. Hausdorff dimension of a class of three-interval exchange maps. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1257-1281. doi: 10.3934/dcds.2020077

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (171)
  • HTML views (145)
  • Cited by (0)

Other articles
by authors

[Back to Top]