• Previous Article
    Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media
  • DCDS Home
  • This Issue
  • Next Article
    A $ G^{\delta, 1} $ almost conservation law for mCH and the evolution of its radius of spatial analyticity
doi: 10.3934/dcds.2020389

Approximation properties of Lüroth expansions

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

School of Science, Wuhan University of Technology, Wuhan 430074, China

* Corresponding author: Qinglong Zhou

Received  April 2020 Revised  September 2020 Published  December 2020

For
$ x\in[0,1), $
let
$ [d_{1}(x),d_{2}(x),\ldots] $
be its Lüroth expansion and
$ \big\{\frac{p_{n}(x)}{q_{n}(x)}, n\geq 1\big\} $
be the sequence of convergents of
$ x. $
In this paper, we study the Jarník-like set of real numbers which can be well approximated by infinitely many of their convergents in the Lüroth expansion
$ \colon $
$ W(\psi) = \{x\in[0,1)\colon |xq_{n}(x)-p_{n}(x)|<\psi(n) \text{ for infinitely many } n\in \mathbb{N}\}, $
where
$ \psi\colon \mathbb{R}\to (0,\frac{1}{2}] $
is a positive function. We completely determine the Hausdorff dimension of
$ W(\psi). $
Citation: Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020389
References:
[1]

J. BarrionuevoR. M. BurtonK. Dajani and C. Kraaikamp, Ergodic properties of generalized Lüroth series, Acta Arith., 4 (1996), 311-327.  doi: 10.4064/aa-74-4-311-327.  Google Scholar

[2]

J. Barral and S. Seuret, A localized Jarník-Besicovitch theorem, Adv. Math., 4 (2011), 3191-3215.  doi: 10.1016/j.aim.2010.10.011.  Google Scholar

[3]

L. Barreira and G. Iommi, Frequency of digits in the Lüroth expansion, J. Number Theory, 6 (2009), 1479-1490.  doi: 10.1016/j.jnt.2008.06.002.  Google Scholar

[4]

V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math., 3 (2006), 971-992.  doi: 10.4007/annals.2006.164.971.  Google Scholar

[5]

C. Y. CaoJ. Wu and Z. L. Zhang, The efficiency of approximating real numbers by Lüroth expansion, Czechoslovak Math. J., 2 (2013), 497-513.  doi: 10.1007/s10587-013-0033-1.  Google Scholar

[6]

Y. H. ChenY. Sun and X. J. Zhao, A localized uniformly Jarník set in continued fractions, Acta Arith., 167 (2015), 267-280.  doi: 10.4064/aa167-3-5.  Google Scholar

[7]

K. Dajani and C. Kraaikamp, On approximation by Lüroth series, J. Théor. Nombres Bordeaux, 8 (1996), 331-346.  doi: 10.5802/jtnb.172.  Google Scholar

[8]

R. J. Duffin and A. C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J., 8 (1941), 243-255.  doi: 10.1215/S0012-7094-41-00818-9.  Google Scholar

[9]

A. H. FanL. M. LiaoJ. H. Ma and B. W. Wang, Dimension of Besicovitch-Eggleston sets in countable symbolic space, Nonlinearity, 23 (2010), 1185-1197.  doi: 10.1088/0951-7715/23/5/009.  Google Scholar

[10]

K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, 3$^{rd}$ edition, John Wiley & Sons, Ltd., Chichester, 2014.  Google Scholar

[11]

I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc., 37 (1941), 199-228.  doi: 10.1017/S030500410002171X.  Google Scholar

[12]

J. Galambos, Representations of real numbers by infinite series, Lecture Notes in Mathematics, vol. 502, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[13]

M. HussainD. KleinbockN. Wadleigh and B. W. Wang, Hausdorff measure of sets of Dirichlet non-improvable numbers, Mathematika, 64 (2018), 502-518.  doi: 10.1112/S0025579318000074.  Google Scholar

[14]

V. Jarník, Zur Theorie der diophantischen Approximationen, Monatsh. Math. Phys., 39 (1932), 403-438.  doi: 10.1007/BF01699082.  Google Scholar

[15]

A. Ya. Khintchine, Einige Sätzeber Kettenbrche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92 (1924), 115-125.  doi: 10.1007/BF01448437.  Google Scholar

[16]

A. Ya. Khintchine, Continued Fractions, P. Noordhoff, Ltd., Groningen, 1963.  Google Scholar

[17]

D. Koukoulopoulos and J. Maynard, On the Duffin-Schaeffer conjecture, Ann. of Math., 192 (2020), 251-307.  doi: 10.4007/annals.2020.192.1.5.  Google Scholar

[18]

J. Lüroth, Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Ann., 21 (1883), 411-423.  doi: 10.1007/BF01443883.  Google Scholar

[19]

R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.  doi: 10.1112/plms/s3-73.1.105.  Google Scholar

[20]

L. M. Shen, Hausdorff dimension of the set concerning with Borel-Bernstein theory in Lüroth expansions, J. Korean Math. Soc., 54 (2017), 1301-1316.  doi: 10.4134/JKMS.j160501.  Google Scholar

[21]

W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. doi: 3-540-09762-7.  Google Scholar

[22]

B. Tan and Q. L. Zhou, The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., 478 (2019), 229-235.  doi: 10.1016/j.jmaa.2019.05.029.  Google Scholar

[23]

B. Tan and Q.L. Zhou, Dimension theory of the product of partial quotients in Lüroth expansions, Int. J. Number Theory, (2020). doi: 10.1142/S1793042121500287.  Google Scholar

[24]

B. W. Wang and J. Wu, Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math., 5 (2008), 1319-1339.  doi: 10.1016/j.aim.2008.03.006.  Google Scholar

[25]

B. W. WangJ. Wu and J. Xu, A generalization of the Jarník-Besicovitch theorem by continued fractions, Ergodic Theory Dynam. Systems, 36 (2016), 1278-1306.  doi: 10.1017/etds.2014.98.  Google Scholar

[26]

S. K. Wang and J. Xu, On the Lebesgue measure of sum-level sets for Lüroth expansion, J. Math. Anal. Appl., 374 (2011), 197-200.  doi: 10.1016/j.jmaa.2010.08.047.  Google Scholar

show all references

References:
[1]

J. BarrionuevoR. M. BurtonK. Dajani and C. Kraaikamp, Ergodic properties of generalized Lüroth series, Acta Arith., 4 (1996), 311-327.  doi: 10.4064/aa-74-4-311-327.  Google Scholar

[2]

J. Barral and S. Seuret, A localized Jarník-Besicovitch theorem, Adv. Math., 4 (2011), 3191-3215.  doi: 10.1016/j.aim.2010.10.011.  Google Scholar

[3]

L. Barreira and G. Iommi, Frequency of digits in the Lüroth expansion, J. Number Theory, 6 (2009), 1479-1490.  doi: 10.1016/j.jnt.2008.06.002.  Google Scholar

[4]

V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math., 3 (2006), 971-992.  doi: 10.4007/annals.2006.164.971.  Google Scholar

[5]

C. Y. CaoJ. Wu and Z. L. Zhang, The efficiency of approximating real numbers by Lüroth expansion, Czechoslovak Math. J., 2 (2013), 497-513.  doi: 10.1007/s10587-013-0033-1.  Google Scholar

[6]

Y. H. ChenY. Sun and X. J. Zhao, A localized uniformly Jarník set in continued fractions, Acta Arith., 167 (2015), 267-280.  doi: 10.4064/aa167-3-5.  Google Scholar

[7]

K. Dajani and C. Kraaikamp, On approximation by Lüroth series, J. Théor. Nombres Bordeaux, 8 (1996), 331-346.  doi: 10.5802/jtnb.172.  Google Scholar

[8]

R. J. Duffin and A. C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J., 8 (1941), 243-255.  doi: 10.1215/S0012-7094-41-00818-9.  Google Scholar

[9]

A. H. FanL. M. LiaoJ. H. Ma and B. W. Wang, Dimension of Besicovitch-Eggleston sets in countable symbolic space, Nonlinearity, 23 (2010), 1185-1197.  doi: 10.1088/0951-7715/23/5/009.  Google Scholar

[10]

K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, 3$^{rd}$ edition, John Wiley & Sons, Ltd., Chichester, 2014.  Google Scholar

[11]

I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc., 37 (1941), 199-228.  doi: 10.1017/S030500410002171X.  Google Scholar

[12]

J. Galambos, Representations of real numbers by infinite series, Lecture Notes in Mathematics, vol. 502, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[13]

M. HussainD. KleinbockN. Wadleigh and B. W. Wang, Hausdorff measure of sets of Dirichlet non-improvable numbers, Mathematika, 64 (2018), 502-518.  doi: 10.1112/S0025579318000074.  Google Scholar

[14]

V. Jarník, Zur Theorie der diophantischen Approximationen, Monatsh. Math. Phys., 39 (1932), 403-438.  doi: 10.1007/BF01699082.  Google Scholar

[15]

A. Ya. Khintchine, Einige Sätzeber Kettenbrche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92 (1924), 115-125.  doi: 10.1007/BF01448437.  Google Scholar

[16]

A. Ya. Khintchine, Continued Fractions, P. Noordhoff, Ltd., Groningen, 1963.  Google Scholar

[17]

D. Koukoulopoulos and J. Maynard, On the Duffin-Schaeffer conjecture, Ann. of Math., 192 (2020), 251-307.  doi: 10.4007/annals.2020.192.1.5.  Google Scholar

[18]

J. Lüroth, Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Ann., 21 (1883), 411-423.  doi: 10.1007/BF01443883.  Google Scholar

[19]

R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.  doi: 10.1112/plms/s3-73.1.105.  Google Scholar

[20]

L. M. Shen, Hausdorff dimension of the set concerning with Borel-Bernstein theory in Lüroth expansions, J. Korean Math. Soc., 54 (2017), 1301-1316.  doi: 10.4134/JKMS.j160501.  Google Scholar

[21]

W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. doi: 3-540-09762-7.  Google Scholar

[22]

B. Tan and Q. L. Zhou, The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., 478 (2019), 229-235.  doi: 10.1016/j.jmaa.2019.05.029.  Google Scholar

[23]

B. Tan and Q.L. Zhou, Dimension theory of the product of partial quotients in Lüroth expansions, Int. J. Number Theory, (2020). doi: 10.1142/S1793042121500287.  Google Scholar

[24]

B. W. Wang and J. Wu, Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math., 5 (2008), 1319-1339.  doi: 10.1016/j.aim.2008.03.006.  Google Scholar

[25]

B. W. WangJ. Wu and J. Xu, A generalization of the Jarník-Besicovitch theorem by continued fractions, Ergodic Theory Dynam. Systems, 36 (2016), 1278-1306.  doi: 10.1017/etds.2014.98.  Google Scholar

[26]

S. K. Wang and J. Xu, On the Lebesgue measure of sum-level sets for Lüroth expansion, J. Math. Anal. Appl., 374 (2011), 197-200.  doi: 10.1016/j.jmaa.2010.08.047.  Google Scholar

[1]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[2]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[5]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[6]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[7]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[8]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[9]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[12]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[13]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[14]

Editorial Office. Retraction: Wei Gao and Juan L. G. Guirao, Preface. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : ⅰ-ⅰ. doi: 10.3934/dcdss.201904i

[15]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[16]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[17]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[18]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[19]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[20]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (21)
  • HTML views (42)
  • Cited by (0)

Other articles
by authors

[Back to Top]