-
Previous Article
Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media
- DCDS Home
- This Issue
-
Next Article
A $ G^{\delta, 1} $ almost conservation law for mCH and the evolution of its radius of spatial analyticity
Approximation properties of Lüroth expansions
1. | School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China |
2. | School of Science, Wuhan University of Technology, Wuhan 430074, China |
$ x\in[0,1), $ |
$ [d_{1}(x),d_{2}(x),\ldots] $ |
$ \big\{\frac{p_{n}(x)}{q_{n}(x)}, n\geq 1\big\} $ |
$ x. $ |
$ \colon $ |
$ W(\psi) = \{x\in[0,1)\colon |xq_{n}(x)-p_{n}(x)|<\psi(n) \text{ for infinitely many } n\in \mathbb{N}\}, $ |
$ \psi\colon \mathbb{R}\to (0,\frac{1}{2}] $ |
$ W(\psi). $ |
References:
[1] |
J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp,
Ergodic properties of generalized Lüroth series, Acta Arith., 4 (1996), 311-327.
doi: 10.4064/aa-74-4-311-327. |
[2] |
J. Barral and S. Seuret,
A localized Jarník-Besicovitch theorem, Adv. Math., 4 (2011), 3191-3215.
doi: 10.1016/j.aim.2010.10.011. |
[3] |
L. Barreira and G. Iommi,
Frequency of digits in the Lüroth expansion, J. Number Theory, 6 (2009), 1479-1490.
doi: 10.1016/j.jnt.2008.06.002. |
[4] |
V. Beresnevich and S. Velani,
A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math., 3 (2006), 971-992.
doi: 10.4007/annals.2006.164.971. |
[5] |
C. Y. Cao, J. Wu and Z. L. Zhang,
The efficiency of approximating real numbers by Lüroth expansion, Czechoslovak Math. J., 2 (2013), 497-513.
doi: 10.1007/s10587-013-0033-1. |
[6] |
Y. H. Chen, Y. Sun and X. J. Zhao,
A localized uniformly Jarník set in continued fractions, Acta Arith., 167 (2015), 267-280.
doi: 10.4064/aa167-3-5. |
[7] |
K. Dajani and C. Kraaikamp,
On approximation by Lüroth series, J. Théor. Nombres Bordeaux, 8 (1996), 331-346.
doi: 10.5802/jtnb.172. |
[8] |
R. J. Duffin and A. C. Schaeffer,
Khintchine's problem in metric Diophantine approximation, Duke Math. J., 8 (1941), 243-255.
doi: 10.1215/S0012-7094-41-00818-9. |
[9] |
A. H. Fan, L. M. Liao, J. H. Ma and B. W. Wang,
Dimension of Besicovitch-Eggleston sets in countable symbolic space, Nonlinearity, 23 (2010), 1185-1197.
doi: 10.1088/0951-7715/23/5/009. |
[10] |
K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, 3$^{rd}$ edition, John Wiley & Sons, Ltd., Chichester, 2014. |
[11] |
I. J. Good,
The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc., 37 (1941), 199-228.
doi: 10.1017/S030500410002171X. |
[12] |
J. Galambos, Representations of real numbers by infinite series, Lecture Notes in Mathematics, vol. 502, Springer-Verlag, Berlin-New York, 1976. |
[13] |
M. Hussain, D. Kleinbock, N. Wadleigh and B. W. Wang,
Hausdorff measure of sets of Dirichlet non-improvable numbers, Mathematika, 64 (2018), 502-518.
doi: 10.1112/S0025579318000074. |
[14] |
V. Jarník,
Zur Theorie der diophantischen Approximationen, Monatsh. Math. Phys., 39 (1932), 403-438.
doi: 10.1007/BF01699082. |
[15] |
A. Ya. Khintchine,
Einige Sätzeber Kettenbrche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92 (1924), 115-125.
doi: 10.1007/BF01448437. |
[16] |
A. Ya. Khintchine, Continued Fractions, P. Noordhoff, Ltd., Groningen, 1963. |
[17] |
D. Koukoulopoulos and J. Maynard,
On the Duffin-Schaeffer conjecture, Ann. of Math., 192 (2020), 251-307.
doi: 10.4007/annals.2020.192.1.5. |
[18] |
J. Lüroth,
Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Ann., 21 (1883), 411-423.
doi: 10.1007/BF01443883. |
[19] |
R. D. Mauldin and M. Urbański,
Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.
doi: 10.1112/plms/s3-73.1.105. |
[20] |
L. M. Shen,
Hausdorff dimension of the set concerning with Borel-Bernstein theory in Lüroth expansions, J. Korean Math. Soc., 54 (2017), 1301-1316.
doi: 10.4134/JKMS.j160501. |
[21] |
W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980.
doi: 3-540-09762-7. |
[22] |
B. Tan and Q. L. Zhou,
The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., 478 (2019), 229-235.
doi: 10.1016/j.jmaa.2019.05.029. |
[23] |
B. Tan and Q.L. Zhou, Dimension theory of the product of partial quotients in Lüroth expansions, Int. J. Number Theory, (2020).
doi: 10.1142/S1793042121500287. |
[24] |
B. W. Wang and J. Wu,
Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math., 5 (2008), 1319-1339.
doi: 10.1016/j.aim.2008.03.006. |
[25] |
B. W. Wang, J. Wu and J. Xu,
A generalization of the Jarník-Besicovitch theorem by continued fractions, Ergodic Theory Dynam. Systems, 36 (2016), 1278-1306.
doi: 10.1017/etds.2014.98. |
[26] |
S. K. Wang and J. Xu,
On the Lebesgue measure of sum-level sets for Lüroth expansion, J. Math. Anal. Appl., 374 (2011), 197-200.
doi: 10.1016/j.jmaa.2010.08.047. |
show all references
References:
[1] |
J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp,
Ergodic properties of generalized Lüroth series, Acta Arith., 4 (1996), 311-327.
doi: 10.4064/aa-74-4-311-327. |
[2] |
J. Barral and S. Seuret,
A localized Jarník-Besicovitch theorem, Adv. Math., 4 (2011), 3191-3215.
doi: 10.1016/j.aim.2010.10.011. |
[3] |
L. Barreira and G. Iommi,
Frequency of digits in the Lüroth expansion, J. Number Theory, 6 (2009), 1479-1490.
doi: 10.1016/j.jnt.2008.06.002. |
[4] |
V. Beresnevich and S. Velani,
A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math., 3 (2006), 971-992.
doi: 10.4007/annals.2006.164.971. |
[5] |
C. Y. Cao, J. Wu and Z. L. Zhang,
The efficiency of approximating real numbers by Lüroth expansion, Czechoslovak Math. J., 2 (2013), 497-513.
doi: 10.1007/s10587-013-0033-1. |
[6] |
Y. H. Chen, Y. Sun and X. J. Zhao,
A localized uniformly Jarník set in continued fractions, Acta Arith., 167 (2015), 267-280.
doi: 10.4064/aa167-3-5. |
[7] |
K. Dajani and C. Kraaikamp,
On approximation by Lüroth series, J. Théor. Nombres Bordeaux, 8 (1996), 331-346.
doi: 10.5802/jtnb.172. |
[8] |
R. J. Duffin and A. C. Schaeffer,
Khintchine's problem in metric Diophantine approximation, Duke Math. J., 8 (1941), 243-255.
doi: 10.1215/S0012-7094-41-00818-9. |
[9] |
A. H. Fan, L. M. Liao, J. H. Ma and B. W. Wang,
Dimension of Besicovitch-Eggleston sets in countable symbolic space, Nonlinearity, 23 (2010), 1185-1197.
doi: 10.1088/0951-7715/23/5/009. |
[10] |
K. J. Falconer, Fractal Geometry, Mathematical Foundations and Applications, 3$^{rd}$ edition, John Wiley & Sons, Ltd., Chichester, 2014. |
[11] |
I. J. Good,
The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc., 37 (1941), 199-228.
doi: 10.1017/S030500410002171X. |
[12] |
J. Galambos, Representations of real numbers by infinite series, Lecture Notes in Mathematics, vol. 502, Springer-Verlag, Berlin-New York, 1976. |
[13] |
M. Hussain, D. Kleinbock, N. Wadleigh and B. W. Wang,
Hausdorff measure of sets of Dirichlet non-improvable numbers, Mathematika, 64 (2018), 502-518.
doi: 10.1112/S0025579318000074. |
[14] |
V. Jarník,
Zur Theorie der diophantischen Approximationen, Monatsh. Math. Phys., 39 (1932), 403-438.
doi: 10.1007/BF01699082. |
[15] |
A. Ya. Khintchine,
Einige Sätzeber Kettenbrche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92 (1924), 115-125.
doi: 10.1007/BF01448437. |
[16] |
A. Ya. Khintchine, Continued Fractions, P. Noordhoff, Ltd., Groningen, 1963. |
[17] |
D. Koukoulopoulos and J. Maynard,
On the Duffin-Schaeffer conjecture, Ann. of Math., 192 (2020), 251-307.
doi: 10.4007/annals.2020.192.1.5. |
[18] |
J. Lüroth,
Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math. Ann., 21 (1883), 411-423.
doi: 10.1007/BF01443883. |
[19] |
R. D. Mauldin and M. Urbański,
Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.
doi: 10.1112/plms/s3-73.1.105. |
[20] |
L. M. Shen,
Hausdorff dimension of the set concerning with Borel-Bernstein theory in Lüroth expansions, J. Korean Math. Soc., 54 (2017), 1301-1316.
doi: 10.4134/JKMS.j160501. |
[21] |
W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980.
doi: 3-540-09762-7. |
[22] |
B. Tan and Q. L. Zhou,
The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., 478 (2019), 229-235.
doi: 10.1016/j.jmaa.2019.05.029. |
[23] |
B. Tan and Q.L. Zhou, Dimension theory of the product of partial quotients in Lüroth expansions, Int. J. Number Theory, (2020).
doi: 10.1142/S1793042121500287. |
[24] |
B. W. Wang and J. Wu,
Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math., 5 (2008), 1319-1339.
doi: 10.1016/j.aim.2008.03.006. |
[25] |
B. W. Wang, J. Wu and J. Xu,
A generalization of the Jarník-Besicovitch theorem by continued fractions, Ergodic Theory Dynam. Systems, 36 (2016), 1278-1306.
doi: 10.1017/etds.2014.98. |
[26] |
S. K. Wang and J. Xu,
On the Lebesgue measure of sum-level sets for Lüroth expansion, J. Math. Anal. Appl., 374 (2011), 197-200.
doi: 10.1016/j.jmaa.2010.08.047. |
[1] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[2] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[3] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[4] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[5] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[6] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[7] |
Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146 |
[8] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[9] |
Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048 |
[10] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[11] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
[12] |
Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 |
[13] |
Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49 |
[14] |
Editorial Office. Retraction: Wei Gao and Juan L. G. Guirao, Preface. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : ⅰ-ⅰ. doi: 10.3934/dcdss.201904i |
[15] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
[16] |
Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020460 |
[17] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[18] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[19] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[20] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]