-
Previous Article
Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential
- DCDS Home
- This Issue
-
Next Article
Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families
Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems
1. | Departamento de Matemática, Universidade Federal de Sergipe, São Cristóvão-SE, 49100-000, Brazil |
2. | Departamento de Matematica y C. C., Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile |
3. | Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, Campina Grande 58429-900, Brazil |
$ \begin{equation*} -\Delta u+V(x)u = f(x,u),\,\,\, x\in\mathbb{R}^n,\,\, n\geq 3, \end{equation*} $ |
$ V $ |
$ f $ |
$ f(x,u) $ |
$ f $ |
$ \rho(x)f(u) $ |
$ f $ |
$ \rho $ |
$ \mathrm{(H)} $ |
$ \rho $ |
References:
[1] |
A. Ambrosetti, H. Brezis and G. Cerami,
Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[2] |
A. Ambrosetti, V. Felli and A. Malchiodi,
Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.
doi: 10.4171/JEMS/24. |
[3] |
A. Bahrouni, H. Ounaies and V. D. Rădulescu,
Bound state solutions of sublinear Schrödinger equations with lack of compactness, RACSAM, 113 (2019), 1191-1210.
doi: 10.1007/s13398-018-0541-9. |
[4] |
A. Bahrouni, H. Ounaies and V. D. Rădulescu,
Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 445-465.
doi: 10.1017/S0308210513001169. |
[5] |
H. Brezis and L. Oswald,
Remarks on sublinear elliptic equations, Nonlinear Analysis. Theory, Methods & Applications., 1 (1986), 55-64.
doi: 10.1016/0362-546X(86)90011-8. |
[6] |
H. Brezis and S. Kamin,
Sublinear elliptic equations in $\mathbb{R}^N$, Manuscripta Math., 74 (1992), 87-106.
doi: 10.1007/BF02567660. |
[7] |
H. Brezis and L. Nirenberg,
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[8] |
J. Chabrowski and J. M. B. do Ó,
On semilinear elliptic equations involving concave and convex nonlinearities, Math. Nachr., 233/234 (2002), 55-76.
doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.0.CO;2-R. |
[9] |
D. G. de Figueiredo, J-P Gossez and P. Ubilla,
Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.
doi: 10.1016/S0022-1236(02)00060-5. |
[10] |
D. G. de Figueiredo, J-P Gossez and P. Ubilla,
Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc., 8 (2006), 269-286.
doi: 10.4171/JEMS/52. |
[11] |
F. Gazzola and A. Malchiodi,
Some remark on the equation $-\Delta u = \lambda(1+u)^p$ for varying $\lambda, p$ and varying domains, Comm. Partial Differential Equations, 27 (2002), 809-845.
doi: 10.1081/PDE-120002875. |
[12] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.
doi: 10.1007/978-3-642-61798-0. |
[13] |
Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lect. Notes Math., vol. 1, AMS, Providence, RI, 1997. |
[14] |
T-S Hsu and H-L Lin,
Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $\mathbb{R}^n$, J. Math. Anal. Appl., 365 (2010), 758-775.
doi: 10.1016/j.jmaa.2009.12.004. |
[15] |
Z. Liu and Z-Q Wang,
Schrödinger equations with concave and convex nonlinearities, Z. angew. Math. Phys., 56 (2005), 609-629.
doi: 10.1007/s00033-005-3115-6. |
[16] |
M. H. Protter and H. F. Weinberger, Maximum Principle in Differential Equations, Prentice Hall, Englewoood Cliffs, New Jersey, 1967. |
[17] |
T-F Wu,
Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^n$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99-131.
doi: 10.1016/j.jfa.2009.08.005. |
show all references
References:
[1] |
A. Ambrosetti, H. Brezis and G. Cerami,
Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[2] |
A. Ambrosetti, V. Felli and A. Malchiodi,
Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.
doi: 10.4171/JEMS/24. |
[3] |
A. Bahrouni, H. Ounaies and V. D. Rădulescu,
Bound state solutions of sublinear Schrödinger equations with lack of compactness, RACSAM, 113 (2019), 1191-1210.
doi: 10.1007/s13398-018-0541-9. |
[4] |
A. Bahrouni, H. Ounaies and V. D. Rădulescu,
Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 445-465.
doi: 10.1017/S0308210513001169. |
[5] |
H. Brezis and L. Oswald,
Remarks on sublinear elliptic equations, Nonlinear Analysis. Theory, Methods & Applications., 1 (1986), 55-64.
doi: 10.1016/0362-546X(86)90011-8. |
[6] |
H. Brezis and S. Kamin,
Sublinear elliptic equations in $\mathbb{R}^N$, Manuscripta Math., 74 (1992), 87-106.
doi: 10.1007/BF02567660. |
[7] |
H. Brezis and L. Nirenberg,
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[8] |
J. Chabrowski and J. M. B. do Ó,
On semilinear elliptic equations involving concave and convex nonlinearities, Math. Nachr., 233/234 (2002), 55-76.
doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.0.CO;2-R. |
[9] |
D. G. de Figueiredo, J-P Gossez and P. Ubilla,
Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.
doi: 10.1016/S0022-1236(02)00060-5. |
[10] |
D. G. de Figueiredo, J-P Gossez and P. Ubilla,
Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc., 8 (2006), 269-286.
doi: 10.4171/JEMS/52. |
[11] |
F. Gazzola and A. Malchiodi,
Some remark on the equation $-\Delta u = \lambda(1+u)^p$ for varying $\lambda, p$ and varying domains, Comm. Partial Differential Equations, 27 (2002), 809-845.
doi: 10.1081/PDE-120002875. |
[12] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.
doi: 10.1007/978-3-642-61798-0. |
[13] |
Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lect. Notes Math., vol. 1, AMS, Providence, RI, 1997. |
[14] |
T-S Hsu and H-L Lin,
Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $\mathbb{R}^n$, J. Math. Anal. Appl., 365 (2010), 758-775.
doi: 10.1016/j.jmaa.2009.12.004. |
[15] |
Z. Liu and Z-Q Wang,
Schrödinger equations with concave and convex nonlinearities, Z. angew. Math. Phys., 56 (2005), 609-629.
doi: 10.1007/s00033-005-3115-6. |
[16] |
M. H. Protter and H. F. Weinberger, Maximum Principle in Differential Equations, Prentice Hall, Englewoood Cliffs, New Jersey, 1967. |
[17] |
T-F Wu,
Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^n$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99-131.
doi: 10.1016/j.jfa.2009.08.005. |
[1] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[2] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[3] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[4] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[5] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[6] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[7] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[8] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[9] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[10] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[11] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
[12] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[13] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[14] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[15] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[16] |
Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360 |
[17] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[18] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[19] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[20] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]