• Previous Article
    Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms
  • DCDS Home
  • This Issue
  • Next Article
    Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues
doi: 10.3934/dcds.2020393

On global well-posedness of the modified KdV equation in modulation spaces

1. 

School of Mathematics, The University of Edinburgh, and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom

2. 

School of Mathematics, Watson Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

* Corresponding author: Tadahiro Oh

Received  January 2020 Revised  October 2020 Published  January 2021

Fund Project: The first author was supported by the European Research Council (grant no. 637995 "ProbDynDispEq" and grant no. 864138 "SingStochDispDyn")

We study well-posedness of the complex-valued modified KdV equation (mKdV) on the real line. In particular, we prove local well-posedness of mKdV in modulation spaces $ M^{2,p}_{s}( \mathbb{R}) $ for $ s \ge \frac14 $ and $ 2\leq p < \infty $. For $ s < \frac 14 $, we show that the solution map for mKdV is not locally uniformly continuous in $ M^{2,p}_{s}( \mathbb{R}) $. By combining this local well-posedness with our previous work (2018) on an a priori global-in-time bound for mKdV in modulation spaces, we also establish global well-posedness of mKdV in $ M^{2,p}_{s}( \mathbb{R}) $ for $ s \ge \frac14 $ and $ 2\leq p < \infty $.

Citation: Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020393
References:
[1]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II, The KdV-equation. Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar

[2]

M. Chen and B. Guo, Local well and ill posedness for the modified KdV equations in subcritical modulation spaces, Commun. Math. Sci., 18 (2020), 909-946.  doi: 10.4310/CMS.2020.v18.n4.a2.  Google Scholar

[3]

M. ChristJ. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293.  doi: 10.1353/ajm.2003.0040.  Google Scholar

[4]

M. ChristJ. Holmer and D. Tataru, Low regularity a priori bounds for the modified Korteweg-de Vries equation, Lib. Math. (N.S.), 32 (2012), 51-75.  doi: 10.14510/lm-ns.v32i1.32.  Google Scholar

[5]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $ \mathbb{R}$ and $ \mathbb{T}$, J. Amer. Math. Soc., 16 (2003), 705-749.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[6]

H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Func. Anal., 86 (1989), 307-340.  doi: 10.1016/0022-1236(89)90055-4.  Google Scholar

[7]

H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. II, Monatsh. Math., 108 (1989), 129-148.  doi: 10.1007/BF01308667.  Google Scholar

[8]

J. GinibreY. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[9]

A. Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., 2004 (2004), 3287-3308.  doi: 10.1155/S1073792804140981.  Google Scholar

[10]

A. Grünrock and L. Vega, Local well-posedness for the modified KdV equation in almost critical $ \widehat {H^r_s}$-spaces, Trans. Amer. Math. Soc., 361 (2009), 5681-5694.  doi: 10.1090/S0002-9947-09-04611-X.  Google Scholar

[11]

S. Guo, On the 1D cubic nonlinear Schrödinger equation in an almost critical space, J. Fourier Anal. Appl., 23 (2017), 91-124.  doi: 10.1007/s00041-016-9464-z.  Google Scholar

[12]

S. Guo, X. Ren and B. Wang, Local well-posedness for the derivative nonlinear Schrödinger equations with $L^2$ subcritical data,, arXiv: 1608.03136 [math.AP]. Google Scholar

[13]

B. Harrop-Griffiths, R. Killip and M. Vişan, Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb{R})$, arXiv: 2003.05011 [math.AP]. Google Scholar

[14]

R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14 (1973), 805-809.  doi: 10.1063/1.1666399.  Google Scholar

[15]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979), 89-99.  doi: 10.1007/BF01647967.  Google Scholar

[16]

T. Kato, On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness, J. Anal. Math., 67 (1995), 281-306.  doi: 10.1007/BF02787794.  Google Scholar

[17]

C. E. KenigG. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Math. J., 59 (1989), 585-610.  doi: 10.1215/S0012-7094-89-05927-9.  Google Scholar

[18]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[19]

C. E. KenigG. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106 (2001), 617-633.  doi: 10.1215/S0012-7094-01-10638-8.  Google Scholar

[20]

R. KillipM. Vişan and X. Zhang, Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., 28 (2018), 1062-1090.  doi: 10.1007/s00039-018-0444-0.  Google Scholar

[21]

N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential Integral Equations, 22 (2009), 447-464.   Google Scholar

[22]

S. Kwon, T. Oh and H. Yoon, Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line, Ann. Fac. Sci. Toulouse Math. 29 (2020), no. 3,649–720. Google Scholar

[23]

L. MolinetD. Pilod and S. Vento, Unconditional uniqueness for the modified Korteweg-de Vries equation on the line, Rev. Mat. Iberoam., 34 (2018), 1563-1608.  doi: 10.4171/rmi/1036.  Google Scholar

[24]

T. Oh and Y. Wang, Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces, J. Differential Equations, 269 (2020), 612-640.  doi: 10.1016/j.jde.2019.12.017.  Google Scholar

[25]

T. Oh and Y. Wang, Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier-Lebesgue spaces,, to appear in J. Anal. Math. Google Scholar

[26]

N. Sasa and J. Satsuma, New-type of soliton solutions for a higher-order nonlinear, J. Phys. Soc. Japan, 60 (1991), 409-417.  doi: 10.1143/JPSJ.60.409.  Google Scholar

[27]

T. Tao, Multilinear weighted convolution of $L^2$-functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.  doi: 10.1353/ajm.2001.0035.  Google Scholar

show all references

References:
[1]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II, The KdV-equation. Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar

[2]

M. Chen and B. Guo, Local well and ill posedness for the modified KdV equations in subcritical modulation spaces, Commun. Math. Sci., 18 (2020), 909-946.  doi: 10.4310/CMS.2020.v18.n4.a2.  Google Scholar

[3]

M. ChristJ. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293.  doi: 10.1353/ajm.2003.0040.  Google Scholar

[4]

M. ChristJ. Holmer and D. Tataru, Low regularity a priori bounds for the modified Korteweg-de Vries equation, Lib. Math. (N.S.), 32 (2012), 51-75.  doi: 10.14510/lm-ns.v32i1.32.  Google Scholar

[5]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $ \mathbb{R}$ and $ \mathbb{T}$, J. Amer. Math. Soc., 16 (2003), 705-749.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[6]

H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Func. Anal., 86 (1989), 307-340.  doi: 10.1016/0022-1236(89)90055-4.  Google Scholar

[7]

H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. II, Monatsh. Math., 108 (1989), 129-148.  doi: 10.1007/BF01308667.  Google Scholar

[8]

J. GinibreY. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar

[9]

A. Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., 2004 (2004), 3287-3308.  doi: 10.1155/S1073792804140981.  Google Scholar

[10]

A. Grünrock and L. Vega, Local well-posedness for the modified KdV equation in almost critical $ \widehat {H^r_s}$-spaces, Trans. Amer. Math. Soc., 361 (2009), 5681-5694.  doi: 10.1090/S0002-9947-09-04611-X.  Google Scholar

[11]

S. Guo, On the 1D cubic nonlinear Schrödinger equation in an almost critical space, J. Fourier Anal. Appl., 23 (2017), 91-124.  doi: 10.1007/s00041-016-9464-z.  Google Scholar

[12]

S. Guo, X. Ren and B. Wang, Local well-posedness for the derivative nonlinear Schrödinger equations with $L^2$ subcritical data,, arXiv: 1608.03136 [math.AP]. Google Scholar

[13]

B. Harrop-Griffiths, R. Killip and M. Vişan, Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb{R})$, arXiv: 2003.05011 [math.AP]. Google Scholar

[14]

R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys., 14 (1973), 805-809.  doi: 10.1063/1.1666399.  Google Scholar

[15]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979), 89-99.  doi: 10.1007/BF01647967.  Google Scholar

[16]

T. Kato, On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness, J. Anal. Math., 67 (1995), 281-306.  doi: 10.1007/BF02787794.  Google Scholar

[17]

C. E. KenigG. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Math. J., 59 (1989), 585-610.  doi: 10.1215/S0012-7094-89-05927-9.  Google Scholar

[18]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[19]

C. E. KenigG. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106 (2001), 617-633.  doi: 10.1215/S0012-7094-01-10638-8.  Google Scholar

[20]

R. KillipM. Vişan and X. Zhang, Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., 28 (2018), 1062-1090.  doi: 10.1007/s00039-018-0444-0.  Google Scholar

[21]

N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential Integral Equations, 22 (2009), 447-464.   Google Scholar

[22]

S. Kwon, T. Oh and H. Yoon, Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line, Ann. Fac. Sci. Toulouse Math. 29 (2020), no. 3,649–720. Google Scholar

[23]

L. MolinetD. Pilod and S. Vento, Unconditional uniqueness for the modified Korteweg-de Vries equation on the line, Rev. Mat. Iberoam., 34 (2018), 1563-1608.  doi: 10.4171/rmi/1036.  Google Scholar

[24]

T. Oh and Y. Wang, Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces, J. Differential Equations, 269 (2020), 612-640.  doi: 10.1016/j.jde.2019.12.017.  Google Scholar

[25]

T. Oh and Y. Wang, Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier-Lebesgue spaces,, to appear in J. Anal. Math. Google Scholar

[26]

N. Sasa and J. Satsuma, New-type of soliton solutions for a higher-order nonlinear, J. Phys. Soc. Japan, 60 (1991), 409-417.  doi: 10.1143/JPSJ.60.409.  Google Scholar

[27]

T. Tao, Multilinear weighted convolution of $L^2$-functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[1]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[2]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[3]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[4]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[5]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[6]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[7]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[8]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[9]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[10]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[13]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[14]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[15]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[16]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[17]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[18]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (19)
  • HTML views (60)
  • Cited by (0)

Other articles
by authors

[Back to Top]