July  2021, 41(7): 3021-3029. doi: 10.3934/dcds.2020395

Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem

1. 

Dipartimento di Matematica G. Castelnuovo, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy

2. 

UMR 20-88, CY Paris University, 2, avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France

* Corresponding author

Received  May 2020 Revised  October 2020 Published  July 2021 Early access  December 2020

We prove gradient boundary blow up rates for ergodic functions in bounded domains related to fully nonlinear degenerate/singular elliptic operators. As a consequence, we deduce the uniqueness, up to constants, of the ergodic functions. The results are obtained by means of a Liouville type classification theorem in half-spaces for infinite boundary value problems related to fully nonlinear, uniformly elliptic operators.

Citation: Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395
References:
[1]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, 2$^{nd}$ edition, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-8137-3.  Google Scholar

[2]

G. BarlesS. KoikeO. Ley and E. Topp, Regularity results and large time behavior for integro-differential equations with coercive Hamiltonians, Calc. Var., 54 (2015), 539-572.  doi: 10.1007/s00526-014-0794-x.  Google Scholar

[3]

B. BarriosL. Del PezzoJ. García-Melián and A. Quaas, Symmetry results in the halfspace for a semilinear fractional Laplace equation, Annali di Matematica, 197 (2018), 1385-1416.  doi: 10.1007/s10231-018-0729-9.  Google Scholar

[4]

H. BerestyckiF. Hamel and R. Monneau, One dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375-396.  doi: 10.1215/S0012-7094-00-10331-6.  Google Scholar

[5]

I. Birindelli and F. Demengel, Fully nonlinear operators with Hamiltonian: Hölder regularity of the gradient, Nonlinear Differ. Equ. Appl., 23 (2016), Art. 41, 17 pp. doi: 10.1007/s00030-016-0392-z.  Google Scholar

[6]

I. Birindelli, F. Demengel and F. Leoni, Ergodic pairs for singular or degenerate fully nonlinear operators, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 75, 28 pp. doi: 10.1051/cocv/2018070.  Google Scholar

[7]

I. Birindelli, F. Demengel and F. Leoni, Dirichlet Problems for Fully Nonlinear Equations with "Subquadratic" Hamiltonians, in Contemporary Research in Elliptic PDEs and Related Topics (Ed. S. Dipierro), Springer INdAM Series 33 2019,107–127. doi: 10.1007/978-3-030-18921-1.  Google Scholar

[8]

I. Birindelli, F. Demengel and F. Leoni, $\mathcal{C}^{1, \gamma}$ regularity for singular or degenerate fully nonlinear equations and applications, Nonlinear Differ. Equ. Appl., 26 (2019), Paper No. 40. doi: 10.1007/s00030-019-0586-2.  Google Scholar

[9]

I. Capuzzo DolcettaF. Leoni and A. Porretta, Hölder estimates for degenerate elliptic equations with coercive Hamiltonians, Trans. Amer. Math. Soc., 362 (2010), 4511-4536.  doi: 10.1090/S0002-9947-10-04807-5.  Google Scholar

[10]

F. Demengel and I. Birindelli, One-dimensional symmetry for solutions of Allen Cahn fully nonlinear equations, in Symmetry for elliptic PDEs, (A. Farina and E. Valdinci Eds.), Amer. Math. Soc., Providence, RI (2010), 1–15. doi: 10.1090/conm/528.  Google Scholar

[11]

A. FarinaL. MontoroG. Riey and B. Sciunzi, Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1-22.  doi: 10.1016/j.anihpc.2013.09.005.  Google Scholar

[12]

R. FilippucciP. Pucci and P. Souplet, A Liouville-type theorem in a half-space and its applications to the gradient blow-up behavior for superquadratic diffusive Hamilton-Jacobi equations, Comm. Partial Differential Equations, 45 (2020), 321-349.  doi: 10.1080/03605302.2019.1684941.  Google Scholar

[13]

Y. Giga and M. Ohnuma, On strong comparison principle for semicontinuous viscosity solutions of some nonlinear elliptic equations, Int. J. Pure Appl. Math., 22 (2005), 165-184.   Google Scholar

[14]

C. Imbert and L. Silvestre, $C^{1, \alpha}$ regularity of solutions of degenerate fully nonlinear elliptic equations, Adv. Math., 233 (2013), 196-206.  doi: 10.1016/j.aim.2012.07.033.  Google Scholar

[15]

T. Kilpeläinen, H. Shahgholian and X. Zhong, Growth estimates through scaling for quasilinear partial differential equation, Ann. Acad. Sci. Fenn. Math., 32 (2007), no. 2,595–599.  Google Scholar

[16]

J.-M. Lasry and P.-L. Lions, Nonlinear Elliptic Equations with Singular Boundary Conditions and Stochastic Control with state Constraints. Ⅰ. The model problem, Math. Ann., 283 (1989), 583-630.  doi: 10.1007/BF01442856.  Google Scholar

[17]

T. Leonori and A. Porretta, Gradient bounds for elliptic problems singular at the boundary, Arch. Ration. Mech. Anal., 202 (2011), 663-705.  doi: 10.1007/s00205-011-0436-9.  Google Scholar

[18]

A. Porretta, The "ergodic limit" for a viscous Hamilton-Jacobi equation with Dirichlet conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 21 (2010), 59-78.  doi: 10.4171/RLM/561.  Google Scholar

show all references

References:
[1]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, 2$^{nd}$ edition, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-8137-3.  Google Scholar

[2]

G. BarlesS. KoikeO. Ley and E. Topp, Regularity results and large time behavior for integro-differential equations with coercive Hamiltonians, Calc. Var., 54 (2015), 539-572.  doi: 10.1007/s00526-014-0794-x.  Google Scholar

[3]

B. BarriosL. Del PezzoJ. García-Melián and A. Quaas, Symmetry results in the halfspace for a semilinear fractional Laplace equation, Annali di Matematica, 197 (2018), 1385-1416.  doi: 10.1007/s10231-018-0729-9.  Google Scholar

[4]

H. BerestyckiF. Hamel and R. Monneau, One dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375-396.  doi: 10.1215/S0012-7094-00-10331-6.  Google Scholar

[5]

I. Birindelli and F. Demengel, Fully nonlinear operators with Hamiltonian: Hölder regularity of the gradient, Nonlinear Differ. Equ. Appl., 23 (2016), Art. 41, 17 pp. doi: 10.1007/s00030-016-0392-z.  Google Scholar

[6]

I. Birindelli, F. Demengel and F. Leoni, Ergodic pairs for singular or degenerate fully nonlinear operators, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 75, 28 pp. doi: 10.1051/cocv/2018070.  Google Scholar

[7]

I. Birindelli, F. Demengel and F. Leoni, Dirichlet Problems for Fully Nonlinear Equations with "Subquadratic" Hamiltonians, in Contemporary Research in Elliptic PDEs and Related Topics (Ed. S. Dipierro), Springer INdAM Series 33 2019,107–127. doi: 10.1007/978-3-030-18921-1.  Google Scholar

[8]

I. Birindelli, F. Demengel and F. Leoni, $\mathcal{C}^{1, \gamma}$ regularity for singular or degenerate fully nonlinear equations and applications, Nonlinear Differ. Equ. Appl., 26 (2019), Paper No. 40. doi: 10.1007/s00030-019-0586-2.  Google Scholar

[9]

I. Capuzzo DolcettaF. Leoni and A. Porretta, Hölder estimates for degenerate elliptic equations with coercive Hamiltonians, Trans. Amer. Math. Soc., 362 (2010), 4511-4536.  doi: 10.1090/S0002-9947-10-04807-5.  Google Scholar

[10]

F. Demengel and I. Birindelli, One-dimensional symmetry for solutions of Allen Cahn fully nonlinear equations, in Symmetry for elliptic PDEs, (A. Farina and E. Valdinci Eds.), Amer. Math. Soc., Providence, RI (2010), 1–15. doi: 10.1090/conm/528.  Google Scholar

[11]

A. FarinaL. MontoroG. Riey and B. Sciunzi, Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1-22.  doi: 10.1016/j.anihpc.2013.09.005.  Google Scholar

[12]

R. FilippucciP. Pucci and P. Souplet, A Liouville-type theorem in a half-space and its applications to the gradient blow-up behavior for superquadratic diffusive Hamilton-Jacobi equations, Comm. Partial Differential Equations, 45 (2020), 321-349.  doi: 10.1080/03605302.2019.1684941.  Google Scholar

[13]

Y. Giga and M. Ohnuma, On strong comparison principle for semicontinuous viscosity solutions of some nonlinear elliptic equations, Int. J. Pure Appl. Math., 22 (2005), 165-184.   Google Scholar

[14]

C. Imbert and L. Silvestre, $C^{1, \alpha}$ regularity of solutions of degenerate fully nonlinear elliptic equations, Adv. Math., 233 (2013), 196-206.  doi: 10.1016/j.aim.2012.07.033.  Google Scholar

[15]

T. Kilpeläinen, H. Shahgholian and X. Zhong, Growth estimates through scaling for quasilinear partial differential equation, Ann. Acad. Sci. Fenn. Math., 32 (2007), no. 2,595–599.  Google Scholar

[16]

J.-M. Lasry and P.-L. Lions, Nonlinear Elliptic Equations with Singular Boundary Conditions and Stochastic Control with state Constraints. Ⅰ. The model problem, Math. Ann., 283 (1989), 583-630.  doi: 10.1007/BF01442856.  Google Scholar

[17]

T. Leonori and A. Porretta, Gradient bounds for elliptic problems singular at the boundary, Arch. Ration. Mech. Anal., 202 (2011), 663-705.  doi: 10.1007/s00205-011-0436-9.  Google Scholar

[18]

A. Porretta, The "ergodic limit" for a viscous Hamilton-Jacobi equation with Dirichlet conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 21 (2010), 59-78.  doi: 10.4171/RLM/561.  Google Scholar

[1]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[2]

Pablo Blanc. A lower bound for the principal eigenvalue of fully nonlinear elliptic operators. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3613-3623. doi: 10.3934/cpaa.2020158

[3]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[4]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581

[5]

Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751

[6]

Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type. Communications on Pure & Applied Analysis, 2015, 14 (2) : 361-371. doi: 10.3934/cpaa.2015.14.361

[7]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[8]

Luis Caffarelli, Luis Duque, Hernán Vivas. The two membranes problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 6015-6027. doi: 10.3934/dcds.2018152

[9]

Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845

[10]

Isabeau Birindelli, Francoise Demengel. The dirichlet problem for singluar fully nonlinear operators. Conference Publications, 2007, 2007 (Special) : 110-121. doi: 10.3934/proc.2007.2007.110

[11]

Guangcun Lu. Parameterized splitting theorems and bifurcations for potential operators, Part II: Applications to quasi-linear elliptic equations and systems. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021155

[12]

François Hamel, Emmanuel Russ, Nikolai Nadirashvili. Comparisons of eigenvalues of second order elliptic operators. Conference Publications, 2007, 2007 (Special) : 477-486. doi: 10.3934/proc.2007.2007.477

[13]

Giorgio Metafune, Chiara Spina, Cristian Tacelli. On a class of elliptic operators with unbounded diffusion coefficients. Evolution Equations & Control Theory, 2014, 3 (4) : 671-680. doi: 10.3934/eect.2014.3.671

[14]

Craig Cowan. Optimal Hardy inequalities for general elliptic operators with improvements. Communications on Pure & Applied Analysis, 2010, 9 (1) : 109-140. doi: 10.3934/cpaa.2010.9.109

[15]

Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5105-5139. doi: 10.3934/dcds.2021070

[16]

Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869

[17]

Danilo Costarelli, Gianluca Vinti. Asymptotic expansions and Voronovskaja type theorems for the multivariate neural network operators. Mathematical Foundations of Computing, 2020, 3 (1) : 41-50. doi: 10.3934/mfc.2020004

[18]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1871-1897. doi: 10.3934/dcdss.2020462

[19]

Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1883-1898. doi: 10.3934/dcdss.2020148

[20]

Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (116)
  • HTML views (177)
  • Cited by (0)

[Back to Top]