doi: 10.3934/dcds.2020396

Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

2. 

College of Mathematics and Statistics, Yili Normal University, Yining 835000, China

* Corresponding author: Qiao Xin

Received  June 2020 Revised  October 2020 Published  December 2020

Fund Project: The second author is supported by NSFC [No. 11771062, 11971082], Fundamental Research Funds for the Central Universities [No. 2019CDJCYJ001], and Chongqing Key Laboratory of Analytic Mathematics and Applications. The third author is supported by the Youth Doctor Science and Technology Talent Training Project of Xinjiang Uygur Autonomous Region [No. 2017Q087]

This paper deals with the global boundedness of solutions to the forager-exploiter model with logistic sources
$ \begin{equation*} \left\{ \begin{array}{lll} u_t = \Delta u- \nabla\cdot(u\nabla w) + \mu_1 (u-u^m), &x \in \Omega, t>0,\\ v_t = \Delta v - \nabla\cdot(v\nabla u) + \mu_2 ( v-v^l), &x\in \Omega, t>0,\\ w_t = \Delta w - \lambda(u+v)w - \mu w + r(x,t), & x\in \Omega, t>0, \end{array} \right. \end{equation*} $
under homogeneous Neumann boundary conditions in a smoothly bounded domain
$ \Omega \subset R^2 $
, where the constants
$ \mu $
,
$ \mu_1 $
,
$ \mu_2 $
,
$ \lambda $
,
$ m $
and
$ l $
are positive. We prove that the corresponding initial-boundary value problem possesses a global classical solution that is uniformly bounded under conditions
$ 2\leq m < 3 $
,
$ l \geq 3 $
,
$ r(x,t) \in C^1(\overline{\Omega}\times[0,\infty))\cup L^{\infty}(\Omega\times(0,\infty)) $
and the smooth nonnegative initial functions, which improves the results obtained by Wang and Wang (MMMAS 2020).
Citation: Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020396
References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, in: Teubner-Texte Math., 133 1993, 9-126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[2]

T. Black, Global generalized solutions to a forager-exploiter model with superlinear degradation and theri eventual regularity properties, Math. Models Methods Appl. Sci., 30 (2020), 1075-1117.  doi: 10.1142/S0218202520400072.  Google Scholar

[3]

X. Cao, Global radial renormalized solution to a producer-scrounger model with singular sensitivities, Math. Models Methods Appl. Sci., 6 (2020), 1119-1165.  doi: 10.1142/S0218202520400084.  Google Scholar

[4]

H. ChenJ.-M. Li and K. Wang, On the vanishing viscosity limit of a chemotaxis model, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 1963-1987.  doi: 10.3934/dcds.2020101.  Google Scholar

[5]

A. Friedman, Partial Different Equations, Holt, Rinehart and Winston, New York, 1969. Google Scholar

[6]

Y. Giga and H. Sohr, Abstrat $L^p$ estimates for the Cauchy problem with aaplications to the Navier-Sotkes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.  doi: 10.1016/0022-1236(91)90136-S.  Google Scholar

[7]

B. Hu and Y. Tao, To the exclusion of blow-up in three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.  doi: 10.1142/S0218202516400091.  Google Scholar

[8]

C. Jin, Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source, Discrete Contin. Dyn. Syst. Ser. A, 38 (2018), 3547-3566.  doi: 10.3934/dcds.2018150.  Google Scholar

[9]

H.-Y. Jin and Z.-A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 3509-3527.  doi: 10.3934/dcds.2020027.  Google Scholar

[10]

J. Lankeit and Y. Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 6099-6121.  doi: 10.3934/dcds.2017262.  Google Scholar

[11]

H. Li and Y. Tao, Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77 (2018), 108-113.  doi: 10.1016/j.aml.2017.10.006.  Google Scholar

[12]

L. MengJ. Yuan and X. Zheng, Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 3413-3441.  doi: 10.3934/dcds.2019141.  Google Scholar

[13]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 31 (2014), 851-875. doi: 10.1016/j.anihpc.2013.07.007.  Google Scholar

[14]

C. MuL. WangP. Zheng and Q. Zhang, Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system, Nonlinear Anal.: Real World Appl., 14 (2013), 1634-1642.  doi: 10.1016/j.nonrwa.2012.10.022.  Google Scholar

[15]

N. TaniaB. VanderleiJ. P. Heath and L. Edelstein-Keshet, Role of social interactions in dunamic patterns of resource pathches and forager aggregation, Proc. Natl. Acad. Sci. USA, 109 (2012), 11228-11233.   Google Scholar

[16]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl, 381 (2011), 521-529.  doi: 10.1016/j.jmaa.2011.02.041.  Google Scholar

[17]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of larege-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[18]

Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.  doi: 10.1007/s00033-015-0541-y.  Google Scholar

[19]

Y. Tao and M. Winkler, Large time behavior in a forager-exploiter model with differnet taxis strategies for two groups in search of food, Math. Models Methods Appl. Sci., 29 (2019), 2151-2182.  doi: 10.1142/S021820251950043X.  Google Scholar

[20]

J. Wang and M. Wang, Global bounded solution of the higher-dimensional forager-exploixer modle with/without growth sources, Math. Models Methods Appl. Sci., 30 (2020), 1297-1323. doi: 10.1142/S0218202520500232.  Google Scholar

[21]

H. Wang and Y. Li, Boundedness in prey-taxis system with rotational flux terms, Commun. pur Appl.Anal, 19 (2020), 4839-4851.  doi: 10.3934/cpaa.2020214.  Google Scholar

[22]

M. Winkler, Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions, Math. Models Methods Appl. Sci., 29 (2019), 373-418.  doi: 10.1142/S021820251950012X.  Google Scholar

[23]

M. Winkler, Aggregation vs.global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2950.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

show all references

References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, in: Teubner-Texte Math., 133 1993, 9-126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[2]

T. Black, Global generalized solutions to a forager-exploiter model with superlinear degradation and theri eventual regularity properties, Math. Models Methods Appl. Sci., 30 (2020), 1075-1117.  doi: 10.1142/S0218202520400072.  Google Scholar

[3]

X. Cao, Global radial renormalized solution to a producer-scrounger model with singular sensitivities, Math. Models Methods Appl. Sci., 6 (2020), 1119-1165.  doi: 10.1142/S0218202520400084.  Google Scholar

[4]

H. ChenJ.-M. Li and K. Wang, On the vanishing viscosity limit of a chemotaxis model, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 1963-1987.  doi: 10.3934/dcds.2020101.  Google Scholar

[5]

A. Friedman, Partial Different Equations, Holt, Rinehart and Winston, New York, 1969. Google Scholar

[6]

Y. Giga and H. Sohr, Abstrat $L^p$ estimates for the Cauchy problem with aaplications to the Navier-Sotkes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.  doi: 10.1016/0022-1236(91)90136-S.  Google Scholar

[7]

B. Hu and Y. Tao, To the exclusion of blow-up in three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.  doi: 10.1142/S0218202516400091.  Google Scholar

[8]

C. Jin, Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source, Discrete Contin. Dyn. Syst. Ser. A, 38 (2018), 3547-3566.  doi: 10.3934/dcds.2018150.  Google Scholar

[9]

H.-Y. Jin and Z.-A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 3509-3527.  doi: 10.3934/dcds.2020027.  Google Scholar

[10]

J. Lankeit and Y. Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 6099-6121.  doi: 10.3934/dcds.2017262.  Google Scholar

[11]

H. Li and Y. Tao, Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77 (2018), 108-113.  doi: 10.1016/j.aml.2017.10.006.  Google Scholar

[12]

L. MengJ. Yuan and X. Zheng, Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 3413-3441.  doi: 10.3934/dcds.2019141.  Google Scholar

[13]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 31 (2014), 851-875. doi: 10.1016/j.anihpc.2013.07.007.  Google Scholar

[14]

C. MuL. WangP. Zheng and Q. Zhang, Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system, Nonlinear Anal.: Real World Appl., 14 (2013), 1634-1642.  doi: 10.1016/j.nonrwa.2012.10.022.  Google Scholar

[15]

N. TaniaB. VanderleiJ. P. Heath and L. Edelstein-Keshet, Role of social interactions in dunamic patterns of resource pathches and forager aggregation, Proc. Natl. Acad. Sci. USA, 109 (2012), 11228-11233.   Google Scholar

[16]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl, 381 (2011), 521-529.  doi: 10.1016/j.jmaa.2011.02.041.  Google Scholar

[17]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of larege-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[18]

Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.  doi: 10.1007/s00033-015-0541-y.  Google Scholar

[19]

Y. Tao and M. Winkler, Large time behavior in a forager-exploiter model with differnet taxis strategies for two groups in search of food, Math. Models Methods Appl. Sci., 29 (2019), 2151-2182.  doi: 10.1142/S021820251950043X.  Google Scholar

[20]

J. Wang and M. Wang, Global bounded solution of the higher-dimensional forager-exploixer modle with/without growth sources, Math. Models Methods Appl. Sci., 30 (2020), 1297-1323. doi: 10.1142/S0218202520500232.  Google Scholar

[21]

H. Wang and Y. Li, Boundedness in prey-taxis system with rotational flux terms, Commun. pur Appl.Anal, 19 (2020), 4839-4851.  doi: 10.3934/cpaa.2020214.  Google Scholar

[22]

M. Winkler, Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions, Math. Models Methods Appl. Sci., 29 (2019), 373-418.  doi: 10.1142/S021820251950012X.  Google Scholar

[23]

M. Winkler, Aggregation vs.global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2950.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[1]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[2]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[3]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[4]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[5]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[6]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[7]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[8]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[9]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[10]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[11]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277

[12]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[13]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[14]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[15]

Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047

[16]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[17]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[18]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[19]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[20]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (19)
  • HTML views (56)
  • Cited by (0)

Other articles
by authors

[Back to Top]