-
Previous Article
Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media
- DCDS Home
- This Issue
-
Next Article
Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions
Extensions of expansive dynamical systems
Departamento de Matemática y Estadística del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, 25 de Agosto 281, Salto (50000), Uruguay |
We characterize and describe the extensions of expansive and Ano- sov homeomorphisms on compact spaces. As an application we obtain a stability result for extensions of Anosov systems, and show a construction that embeds any expansive system inside an expansive system having the shadowing property for the pseudo orbits of the original space.
References:
[1] |
M. Achigar, A note on Anosov homeomorphisms, Axioms, 8 (2019), 54.
doi: 10.3390/axioms8020054. |
[2] |
M. Achigar, A. Artigue and I. Monteverde,
Expansive homeomorphisms on non-Hausdorff spaces, Topol. Appl., 207 (2016), 109-122.
doi: 10.1016/j.topol.2016.04.016. |
[3] |
J. P. Aubin and H. Frankowska, Set-valued Analysis, Systems & control, Birkhäuser, 1990. |
[4] |
B. F. Bryant,
Expansive self-homeomorphisms of a compact metric space, Amer. Math. Monthly, 69 (1962), 386-391.
doi: 10.1080/00029890.1962.11989902. |
[5] |
M. Cerminara and M. Sambarino,
Stable and unstable sets of $C^0$ perturbations of expansive homeomorphisms of surfaces, Nonlinearity, 12 (1999), 321-332.
doi: 10.1088/0951-7715/12/2/011. |
[6] | |
[7] |
H. B. Keynes and J. B. Robertson,
Generators for topological entropy and expansiveness, Math. Systems Theory, 3 (1969), 51-59.
doi: 10.1007/BF01695625. |
[8] |
J. Lewowicz,
Persistence in expansive systems, Ergodic Theory Dynam. Systems, 3 (1983), 567-578.
doi: 10.1017/S0143385700002157. |
[9] |
S. Nadler, Continuum Theory: An Introduction, Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 1992.
doi: 10.1201/9781315274089. |
[10] |
P. Walters,
On the pseudo orbit tracing property and its relationship to stability, The Structure of Attractors in Dynamical Systems, Lecture Notes in Math., 668 (1978), 231-244.
doi: 10.1007/BFb0101795. |
show all references
References:
[1] |
M. Achigar, A note on Anosov homeomorphisms, Axioms, 8 (2019), 54.
doi: 10.3390/axioms8020054. |
[2] |
M. Achigar, A. Artigue and I. Monteverde,
Expansive homeomorphisms on non-Hausdorff spaces, Topol. Appl., 207 (2016), 109-122.
doi: 10.1016/j.topol.2016.04.016. |
[3] |
J. P. Aubin and H. Frankowska, Set-valued Analysis, Systems & control, Birkhäuser, 1990. |
[4] |
B. F. Bryant,
Expansive self-homeomorphisms of a compact metric space, Amer. Math. Monthly, 69 (1962), 386-391.
doi: 10.1080/00029890.1962.11989902. |
[5] |
M. Cerminara and M. Sambarino,
Stable and unstable sets of $C^0$ perturbations of expansive homeomorphisms of surfaces, Nonlinearity, 12 (1999), 321-332.
doi: 10.1088/0951-7715/12/2/011. |
[6] | |
[7] |
H. B. Keynes and J. B. Robertson,
Generators for topological entropy and expansiveness, Math. Systems Theory, 3 (1969), 51-59.
doi: 10.1007/BF01695625. |
[8] |
J. Lewowicz,
Persistence in expansive systems, Ergodic Theory Dynam. Systems, 3 (1983), 567-578.
doi: 10.1017/S0143385700002157. |
[9] |
S. Nadler, Continuum Theory: An Introduction, Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 1992.
doi: 10.1201/9781315274089. |
[10] |
P. Walters,
On the pseudo orbit tracing property and its relationship to stability, The Structure of Attractors in Dynamical Systems, Lecture Notes in Math., 668 (1978), 231-244.
doi: 10.1007/BFb0101795. |
[1] |
Kyungwoo Song, Yuxi Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1365-1380. doi: 10.3934/dcds.2009.24.1365 |
[2] |
Michael Frankel, Victor Roytburd, Gregory I. Sivashinsky. Dissipativity for a semi-linearized system modeling cellular flames. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 83-99. doi: 10.3934/dcdss.2011.4.83 |
[3] |
Noriaki Kawaguchi. Topological stability and shadowing of zero-dimensional dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2743-2761. doi: 10.3934/dcds.2019115 |
[4] |
Elisabetta Carlini, Francisco J. Silva. A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4269-4292. doi: 10.3934/dcds.2015.35.4269 |
[5] |
Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267 |
[6] |
Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051 |
[7] |
Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334 |
[8] |
Olivier Goubet, Marilena N. Poulou. Semi discrete weakly damped nonlinear Klein-Gordon Schrödinger system. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1525-1539. doi: 10.3934/cpaa.2014.13.1525 |
[9] |
Woochul Jung, Ngocthach Nguyen, Yinong Yang. Spectral decomposition for rescaling expansive flows with rescaled shadowing. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2267-2283. doi: 10.3934/dcds.2020113 |
[10] |
Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029 |
[11] |
Audric Drogoul, Gilles Aubert. The topological gradient method for semi-linear problems and application to edge detection and noise removal. Inverse Problems and Imaging, 2016, 10 (1) : 51-86. doi: 10.3934/ipi.2016.10.51 |
[12] |
P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883 |
[13] |
Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403 |
[14] |
Enoch Humberto Apaza Calla, Bulmer Mejia Garcia, Carlos Arnoldo Morales Rojas. Topological properties of sectional-Anosov flows. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4735-4741. doi: 10.3934/dcds.2015.35.4735 |
[15] |
Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029 |
[16] |
Alfonso Artigue. Discrete and continuous topological dynamics: Fields of cross sections and expansive flows. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5911-5927. doi: 10.3934/dcds.2016059 |
[17] |
Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809 |
[18] |
Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661 |
[19] |
Xiaodong Fan, Tian Qin. Stability analysis for generalized semi-infinite optimization problems under functional perturbations. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1221-1233. doi: 10.3934/jimo.2018201 |
[20] |
Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]