doi: 10.3934/dcds.2020399

Extensions of expansive dynamical systems

Departamento de Matemática y Estadística del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, 25 de Agosto 281, Salto (50000), Uruguay

Received  October 2019 Revised  November 2020 Published  December 2020

Fund Project: Partially supported by Agencia Nacional de Investigación e Innovación, Uruguay

We characterize and describe the extensions of expansive and Anosov homeomorphisms on compact spaces. As an application we obtain a stability result for extensions of Anosov systems, and show a construction that embeds any expansive system inside an expansive system having the shadowing property for the pseudo orbits of the original space.

Citation: Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020399
References:
[1]

M. Achigar, A note on Anosov homeomorphisms, Axioms, 8 (2019), 54. doi: 10.3390/axioms8020054.  Google Scholar

[2]

M. AchigarA. Artigue and I. Monteverde, Expansive homeomorphisms on non-Hausdorff spaces, Topol. Appl., 207 (2016), 109-122.  doi: 10.1016/j.topol.2016.04.016.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-valued Analysis, Systems & control, Birkhäuser, 1990.  Google Scholar

[4]

B. F. Bryant, Expansive self-homeomorphisms of a compact metric space, Amer. Math. Monthly, 69 (1962), 386-391.  doi: 10.1080/00029890.1962.11989902.  Google Scholar

[5]

M. Cerminara and M. Sambarino, Stable and unstable sets of $C^0$ perturbations of expansive homeomorphisms of surfaces,, Nonlinearity, 12 (1999), 321-332.  doi: 10.1088/0951-7715/12/2/011.  Google Scholar

[6]

J. L. Kelley, General Topology, D. Van Nostrand Co., 1955.  Google Scholar

[7]

H. B. Keynes and J. B. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory, 3 (1969), 51-59.  doi: 10.1007/BF01695625.  Google Scholar

[8]

J. Lewowicz, Persistence in expansive systems,, Ergodic Theory Dynam. Systems, 3 (1983), 567-578.  doi: 10.1017/S0143385700002157.  Google Scholar

[9]

S. Nadler, Continuum Theory: An Introduction, Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 1992. doi: 10.1201/9781315274089.  Google Scholar

[10]

P. Walters, On the pseudo orbit tracing property and its relationship to stability,, The Structure of Attractors in Dynamical Systems, Lecture Notes in Math., 668 (1978), 231-244.  doi: 10.1007/BFb0101795.  Google Scholar

show all references

References:
[1]

M. Achigar, A note on Anosov homeomorphisms, Axioms, 8 (2019), 54. doi: 10.3390/axioms8020054.  Google Scholar

[2]

M. AchigarA. Artigue and I. Monteverde, Expansive homeomorphisms on non-Hausdorff spaces, Topol. Appl., 207 (2016), 109-122.  doi: 10.1016/j.topol.2016.04.016.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-valued Analysis, Systems & control, Birkhäuser, 1990.  Google Scholar

[4]

B. F. Bryant, Expansive self-homeomorphisms of a compact metric space, Amer. Math. Monthly, 69 (1962), 386-391.  doi: 10.1080/00029890.1962.11989902.  Google Scholar

[5]

M. Cerminara and M. Sambarino, Stable and unstable sets of $C^0$ perturbations of expansive homeomorphisms of surfaces,, Nonlinearity, 12 (1999), 321-332.  doi: 10.1088/0951-7715/12/2/011.  Google Scholar

[6]

J. L. Kelley, General Topology, D. Van Nostrand Co., 1955.  Google Scholar

[7]

H. B. Keynes and J. B. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory, 3 (1969), 51-59.  doi: 10.1007/BF01695625.  Google Scholar

[8]

J. Lewowicz, Persistence in expansive systems,, Ergodic Theory Dynam. Systems, 3 (1983), 567-578.  doi: 10.1017/S0143385700002157.  Google Scholar

[9]

S. Nadler, Continuum Theory: An Introduction, Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 1992. doi: 10.1201/9781315274089.  Google Scholar

[10]

P. Walters, On the pseudo orbit tracing property and its relationship to stability,, The Structure of Attractors in Dynamical Systems, Lecture Notes in Math., 668 (1978), 231-244.  doi: 10.1007/BFb0101795.  Google Scholar

[1]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[2]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[3]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[4]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[5]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[6]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[7]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[8]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[9]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[10]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[11]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[12]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[13]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[14]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[15]

Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1033-1046. doi: 10.3934/dcdss.2020231

[16]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[17]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[18]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[19]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[20]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

2019 Impact Factor: 1.338

Article outline

[Back to Top]