• Previous Article
    Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media
  • DCDS Home
  • This Issue
  • Next Article
    Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions
July  2021, 41(7): 3093-3108. doi: 10.3934/dcds.2020399

Extensions of expansive dynamical systems

Departamento de Matemática y Estadística del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, 25 de Agosto 281, Salto (50000), Uruguay

Received  October 2019 Revised  November 2020 Published  December 2020

Fund Project: Partially supported by Agencia Nacional de Investigación e Innovación, Uruguay

We characterize and describe the extensions of expansive and Ano- sov homeomorphisms on compact spaces. As an application we obtain a stability result for extensions of Anosov systems, and show a construction that embeds any expansive system inside an expansive system having the shadowing property for the pseudo orbits of the original space.

Citation: Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399
References:
[1]

M. Achigar, A note on Anosov homeomorphisms, Axioms, 8 (2019), 54. doi: 10.3390/axioms8020054.  Google Scholar

[2]

M. AchigarA. Artigue and I. Monteverde, Expansive homeomorphisms on non-Hausdorff spaces, Topol. Appl., 207 (2016), 109-122.  doi: 10.1016/j.topol.2016.04.016.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-valued Analysis, Systems & control, Birkhäuser, 1990.  Google Scholar

[4]

B. F. Bryant, Expansive self-homeomorphisms of a compact metric space, Amer. Math. Monthly, 69 (1962), 386-391.  doi: 10.1080/00029890.1962.11989902.  Google Scholar

[5]

M. Cerminara and M. Sambarino, Stable and unstable sets of $C^0$ perturbations of expansive homeomorphisms of surfaces, Nonlinearity, 12 (1999), 321-332.  doi: 10.1088/0951-7715/12/2/011.  Google Scholar

[6]

J. L. Kelley, General Topology, D. Van Nostrand Co., 1955.  Google Scholar

[7]

H. B. Keynes and J. B. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory, 3 (1969), 51-59.  doi: 10.1007/BF01695625.  Google Scholar

[8]

J. Lewowicz, Persistence in expansive systems, Ergodic Theory Dynam. Systems, 3 (1983), 567-578.  doi: 10.1017/S0143385700002157.  Google Scholar

[9]

S. Nadler, Continuum Theory: An Introduction, Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 1992. doi: 10.1201/9781315274089.  Google Scholar

[10]

P. Walters, On the pseudo orbit tracing property and its relationship to stability, The Structure of Attractors in Dynamical Systems, Lecture Notes in Math., 668 (1978), 231-244.  doi: 10.1007/BFb0101795.  Google Scholar

show all references

References:
[1]

M. Achigar, A note on Anosov homeomorphisms, Axioms, 8 (2019), 54. doi: 10.3390/axioms8020054.  Google Scholar

[2]

M. AchigarA. Artigue and I. Monteverde, Expansive homeomorphisms on non-Hausdorff spaces, Topol. Appl., 207 (2016), 109-122.  doi: 10.1016/j.topol.2016.04.016.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-valued Analysis, Systems & control, Birkhäuser, 1990.  Google Scholar

[4]

B. F. Bryant, Expansive self-homeomorphisms of a compact metric space, Amer. Math. Monthly, 69 (1962), 386-391.  doi: 10.1080/00029890.1962.11989902.  Google Scholar

[5]

M. Cerminara and M. Sambarino, Stable and unstable sets of $C^0$ perturbations of expansive homeomorphisms of surfaces, Nonlinearity, 12 (1999), 321-332.  doi: 10.1088/0951-7715/12/2/011.  Google Scholar

[6]

J. L. Kelley, General Topology, D. Van Nostrand Co., 1955.  Google Scholar

[7]

H. B. Keynes and J. B. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory, 3 (1969), 51-59.  doi: 10.1007/BF01695625.  Google Scholar

[8]

J. Lewowicz, Persistence in expansive systems, Ergodic Theory Dynam. Systems, 3 (1983), 567-578.  doi: 10.1017/S0143385700002157.  Google Scholar

[9]

S. Nadler, Continuum Theory: An Introduction, Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis, 1992. doi: 10.1201/9781315274089.  Google Scholar

[10]

P. Walters, On the pseudo orbit tracing property and its relationship to stability, The Structure of Attractors in Dynamical Systems, Lecture Notes in Math., 668 (1978), 231-244.  doi: 10.1007/BFb0101795.  Google Scholar

[1]

Kyungwoo Song, Yuxi Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1365-1380. doi: 10.3934/dcds.2009.24.1365

[2]

Michael Frankel, Victor Roytburd, Gregory I. Sivashinsky. Dissipativity for a semi-linearized system modeling cellular flames. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 83-99. doi: 10.3934/dcdss.2011.4.83

[3]

Noriaki Kawaguchi. Topological stability and shadowing of zero-dimensional dynamical systems. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2743-2761. doi: 10.3934/dcds.2019115

[4]

Elisabetta Carlini, Francisco J. Silva. A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4269-4292. doi: 10.3934/dcds.2015.35.4269

[5]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[6]

Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051

[7]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

[8]

Olivier Goubet, Marilena N. Poulou. Semi discrete weakly damped nonlinear Klein-Gordon Schrödinger system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1525-1539. doi: 10.3934/cpaa.2014.13.1525

[9]

Woochul Jung, Ngocthach Nguyen, Yinong Yang. Spectral decomposition for rescaling expansive flows with rescaled shadowing. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2267-2283. doi: 10.3934/dcds.2020113

[10]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[11]

Audric Drogoul, Gilles Aubert. The topological gradient method for semi-linear problems and application to edge detection and noise removal. Inverse Problems & Imaging, 2016, 10 (1) : 51-86. doi: 10.3934/ipi.2016.10.51

[12]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[13]

Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403

[14]

Enoch Humberto Apaza Calla, Bulmer Mejia Garcia, Carlos Arnoldo Morales Rojas. Topological properties of sectional-Anosov flows. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4735-4741. doi: 10.3934/dcds.2015.35.4735

[15]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

[16]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

[17]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[18]

Xiaodong Fan, Tian Qin. Stability analysis for generalized semi-infinite optimization problems under functional perturbations. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1221-1233. doi: 10.3934/jimo.2018201

[19]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[20]

Alfonso Artigue. Discrete and continuous topological dynamics: Fields of cross sections and expansive flows. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 5911-5927. doi: 10.3934/dcds.2016059

2019 Impact Factor: 1.338

Article outline

[Back to Top]