doi: 10.3934/dcds.2020400

Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media

1. 

Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China

2. 

Institute of Liberal Arts and Sciences, Tohoku University, Sendai, 980-8576, Japan$ ^\dagger $

* Corresponding author: Conghui Zhang

Currently, Mathematical Institute, Tohoku University, Sendai, 980-8578.
Dedicated to the memory of the late Professor Yuzo Hosono

Received  March 2020 Revised  September 2020 Published  December 2020

Fund Project: This work is supported in part by JSPS Kakenhi, Grant Numbers 16KT0128 and 19K03557; CHZ is sponsored by the China Scholarship Council

This paper is concerned with the existence and stability of steady states of a reaction-diffusion-ODE system arising from the theory of biological pattern formation. We are interested in spontaneous emergence of patterns from spatially heterogeneous environments, hence assume that all coefficients in the equations can depend on the spatial variable. We give some sufficient conditions on the coefficients which guarantee the existence of far-from-the-equilibrium patterns with jump discontinuity and then verify their stability in a weak sense. Our conditions cover the case where the number of equilibria of the kinetic system (i.e., without diffusion) changes from one to three in the spatial interval, which is not obtained by a small perturbation of constant coefficients. Moreover, we consider the asymptotic behavior of steady states as the diffusion coefficient tends to infinity. Some examples and numerical simulations are given to illustrate the theoretical results.

Citation: Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020400
References:
[1]

D. G. AronsonA. Tesei and H. Weinberger, A density-dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., 152 (1988), 259-280.  doi: 10.1007/BF01766153.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[3]

S. HärtingA. Marciniak-Czochra and I. Takagi, Stable patterns with jump discontinuity in systems with Turing instability and hysteresis, Discrete Contin. Dyn. Syst., 37 (2017), 757-800.  doi: 10.3934/dcds.2017032.  Google Scholar

[4]

Y. LiA. Marciniak-CzochraI. Takagi and B. Y. Wu, Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis,, Hiroshima Math. J., 47 (2017), 217-247.  doi: 10.32917/hmj/1499392826.  Google Scholar

[5]

A. Marciniak-Czochra, Receptor-based models with diffusion-driven instability for pattern formation in hydra,, J. Biol. Systems, 11 (2003), 293-324.  doi: 10.1142/S0218339003000889.  Google Scholar

[6]

A. Marciniak-Czochra, Receptor-based models with hysteresis for pattern formation in Hydra,, Math. Biosci., 199 (2006), 97-119.  doi: 10.1016/j.mbs.2005.10.004.  Google Scholar

[7]

A. Marciniak-CzochraM. Nakayama and I. Takagi, Pattern formation in a diffusion-ODE model with hysteresis, Differential Integral Equations, 28 (2015), 655-694.   Google Scholar

[8]

M. MimuraM. Tabata and Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with a small parameter,, SIAM J. Math. Anal., 11 (1980), 613-631.  doi: 10.1137/0511057.  Google Scholar

[9]

J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Third edition, Springer, 2003.  Google Scholar

[10]

J. A. SherratP. K. MainiW. Jäger and W. M$\ddot{\mathrm{u}}$ller, A receptor-based model for pattern formation in hydra, Forma, 10 (1995), 77-95.   Google Scholar

[11]

I. Takagi and H. Yamamoto, Locator function for concentration points in a spatially heterogeneous semilinear Neumann problem,, Indiana Univ. Math. J., 68 (2019), 63-103.  doi: 10.1512/iumj.2019.68.7560.  Google Scholar

[12]

A. M. Turing, The chemical basis of morphogenesis,, Philos. Trans. Roy. Soc. Lond Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[13]

J. C. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, Springer, London, 2014. doi: 10.1007/978-1-4471-5526-3.  Google Scholar

[14]

H. F. Weinberger, A simple system with a continuum of stable inhomogeneous steady states, Nonlinear Partial Differential Equations in Applied Science; Proceedings of the U.S.-Japan Seminar, North-Holland Math. Stud., 81 (1983), 345–359.  Google Scholar

show all references

References:
[1]

D. G. AronsonA. Tesei and H. Weinberger, A density-dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., 152 (1988), 259-280.  doi: 10.1007/BF01766153.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[3]

S. HärtingA. Marciniak-Czochra and I. Takagi, Stable patterns with jump discontinuity in systems with Turing instability and hysteresis, Discrete Contin. Dyn. Syst., 37 (2017), 757-800.  doi: 10.3934/dcds.2017032.  Google Scholar

[4]

Y. LiA. Marciniak-CzochraI. Takagi and B. Y. Wu, Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis,, Hiroshima Math. J., 47 (2017), 217-247.  doi: 10.32917/hmj/1499392826.  Google Scholar

[5]

A. Marciniak-Czochra, Receptor-based models with diffusion-driven instability for pattern formation in hydra,, J. Biol. Systems, 11 (2003), 293-324.  doi: 10.1142/S0218339003000889.  Google Scholar

[6]

A. Marciniak-Czochra, Receptor-based models with hysteresis for pattern formation in Hydra,, Math. Biosci., 199 (2006), 97-119.  doi: 10.1016/j.mbs.2005.10.004.  Google Scholar

[7]

A. Marciniak-CzochraM. Nakayama and I. Takagi, Pattern formation in a diffusion-ODE model with hysteresis, Differential Integral Equations, 28 (2015), 655-694.   Google Scholar

[8]

M. MimuraM. Tabata and Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with a small parameter,, SIAM J. Math. Anal., 11 (1980), 613-631.  doi: 10.1137/0511057.  Google Scholar

[9]

J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Third edition, Springer, 2003.  Google Scholar

[10]

J. A. SherratP. K. MainiW. Jäger and W. M$\ddot{\mathrm{u}}$ller, A receptor-based model for pattern formation in hydra, Forma, 10 (1995), 77-95.   Google Scholar

[11]

I. Takagi and H. Yamamoto, Locator function for concentration points in a spatially heterogeneous semilinear Neumann problem,, Indiana Univ. Math. J., 68 (2019), 63-103.  doi: 10.1512/iumj.2019.68.7560.  Google Scholar

[12]

A. M. Turing, The chemical basis of morphogenesis,, Philos. Trans. Roy. Soc. Lond Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[13]

J. C. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, Springer, London, 2014. doi: 10.1007/978-1-4471-5526-3.  Google Scholar

[14]

H. F. Weinberger, A simple system with a continuum of stable inhomogeneous steady states, Nonlinear Partial Differential Equations in Applied Science; Proceedings of the U.S.-Japan Seminar, North-Holland Math. Stud., 81 (1983), 345–359.  Google Scholar

Figure 2.  Nullclines $ f(u,v) = 0 $ and $ g(u,v) = 0 $. The red curve represents $ f(u,v) = 0 $, while the blue curve represents $ g(u,v) = 0. $
Figure 1.  The relationship between $ X_{i,\beta} $ and $ Y_{i,\beta} $. Cases (a) and (b) are exclusive each other; and cases (c) and (d) are exclusive each other. Theorem 3.2 treats cases (a) and (c); Theorem 3.1 (i) deals with case (a); Theorem 3.1 (ii) deals with case (c) and Theorem 3.3 treats cases (b) and (d)
Figure 3.  Pattern formation in Example 1. The red curve represents receptor; the blue curve represents ligand; light blue is $ \mu_{2} $; green is $ m_{1}(x) $ and brown is $ m_{2}(x) $
Figure 4.  Pattern formation in Example 2. The red curve represents receptor; the blue curve represents ligand; light blue is $ \mu_{2}(x) $ and brown is $ m_{2}(x) $
Figure 5.  Pattern formation in Example 3. The red curve represents receptor; the blue curve represents ligand; light blue is $ \mu_{2}(x) $; green is $ m_{1}(x) $ and brown is $ m_{2}(x) $
[1]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[2]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[3]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[4]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[7]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[8]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[9]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[10]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[13]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[14]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[17]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[18]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[19]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[20]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (19)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]