• Previous Article
    Spatial dynamics and optimization method for a network propagation model in a shifting environment
  • DCDS Home
  • This Issue
  • Next Article
    Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $
doi: 10.3934/dcds.2020401

On some model problem for the propagation of interacting species in a special environment

1. 

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

2. 

School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

3. 

Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France

* Corresponding author: Mingmin Zhang

Received  April 2020 Revised  October 2020 Published  December 2020

The purpose of this note is to study the existence of a nontrivial solution for an elliptic system which comes from a newly introduced mathematical problem so called Field-Road model. Specifically, it consists of coupled equations set in domains of different dimensions together with some interaction of non classical type. We consider a truncated problem by imposing Dirichlet boundary conditions and an unbounded setting as well.

Citation: Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020401
References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[2]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., 66 (2013), 743-766.  doi: 10.1007/s00285-012-0604-z.  Google Scholar

[3]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, Fisher-KPP propagation in the presence of a line: Further effects, Nonlinearity, 26 (2013), 2623-2640.  doi: 10.1088/0951-7715/26/9/2623.  Google Scholar

[4]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line with fast diffusion, Nonlinear Analysis, 137 (2016), 171-189.  doi: 10.1016/j.na.2016.01.023.  Google Scholar

[5]

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013.  Google Scholar

[6]

M. Chipot, Elliptic Equations: An Introductory Course, Birkh$\ddot{ a }$user, Basel, Birkh$\ddot{ a }$user Advanced Texts, 2009. doi: 10.1007/978-3-7643-9982-5.  Google Scholar

[7] M. Chipot, Asymptotic Issues for Some Partial Differential Equations, Imperial College Press, London, 2016.  doi: 10.1142/p1064.  Google Scholar
[8]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 1, Masson, Paris, 1985.  Google Scholar

[9]

L. C. Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Mathematical Society, 2$^{nd}$ edition, 2010. doi: 10.1090/gsm/019.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[11]

L. Rossi, A. Tellini and E. Valdinoci, The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary, SIAM J. Math. Anal., 49 (2017), 4595–4624. doi: 10.1137/17M1125388.  Google Scholar

[12]

A. Tellini, Propagation speed in a strip bounded by a line with different diffusion, J. Differential Equations, 260 (2016), 5956-5986.  doi: 10.1016/j.jde.2015.12.028.  Google Scholar

show all references

References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[2]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., 66 (2013), 743-766.  doi: 10.1007/s00285-012-0604-z.  Google Scholar

[3]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, Fisher-KPP propagation in the presence of a line: Further effects, Nonlinearity, 26 (2013), 2623-2640.  doi: 10.1088/0951-7715/26/9/2623.  Google Scholar

[4]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line with fast diffusion, Nonlinear Analysis, 137 (2016), 171-189.  doi: 10.1016/j.na.2016.01.023.  Google Scholar

[5]

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013.  Google Scholar

[6]

M. Chipot, Elliptic Equations: An Introductory Course, Birkh$\ddot{ a }$user, Basel, Birkh$\ddot{ a }$user Advanced Texts, 2009. doi: 10.1007/978-3-7643-9982-5.  Google Scholar

[7] M. Chipot, Asymptotic Issues for Some Partial Differential Equations, Imperial College Press, London, 2016.  doi: 10.1142/p1064.  Google Scholar
[8]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 1, Masson, Paris, 1985.  Google Scholar

[9]

L. C. Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Mathematical Society, 2$^{nd}$ edition, 2010. doi: 10.1090/gsm/019.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[11]

L. Rossi, A. Tellini and E. Valdinoci, The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary, SIAM J. Math. Anal., 49 (2017), 4595–4624. doi: 10.1137/17M1125388.  Google Scholar

[12]

A. Tellini, Propagation speed in a strip bounded by a line with different diffusion, J. Differential Equations, 260 (2016), 5956-5986.  doi: 10.1016/j.jde.2015.12.028.  Google Scholar

Figure 1.  The domain $ \Omega_\ell $ for one-road problem
Figure 2.  The domain $ \Omega_\ell $ for two-road problem
Figure 3.  The graph of the function $ \rho(x_1) $
[1]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[2]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[5]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[6]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[7]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[8]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[9]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[10]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[13]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[14]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[15]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[16]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[17]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[18]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[20]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (17)
  • HTML views (60)
  • Cited by (0)

Other articles
by authors

[Back to Top]