
-
Previous Article
Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice
- DCDS Home
- This Issue
-
Next Article
Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media
On some model problem for the propagation of interacting species in a special environment
1. | Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland |
2. | School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China |
3. | Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France |
The purpose of this note is to study the existence of a nontrivial solution for an elliptic system which comes from a newly introduced mathematical problem so called Field-Road model. Specifically, it consists of coupled equations set in domains of different dimensions together with some interaction of non classical type. We consider a truncated problem by imposing Dirichlet boundary conditions and an unbounded setting as well.
References:
[1] |
H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709.
doi: 10.1137/1018114. |
[2] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., 66 (2013), 743-766.
doi: 10.1007/s00285-012-0604-z. |
[3] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
Fisher-KPP propagation in the presence of a line: Further effects, Nonlinearity, 26 (2013), 2623-2640.
doi: 10.1088/0951-7715/26/9/2623. |
[4] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line with fast diffusion, Nonlinear Analysis, 137 (2016), 171-189.
doi: 10.1016/j.na.2016.01.023. |
[5] |
P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013. |
[6] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkh$\ddot{ a }$user, Basel, Birkh$\ddot{ a }$user Advanced Texts, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[7] |
M. Chipot, Asymptotic Issues for Some Partial Differential Equations, Imperial College Press, London, 2016.
doi: 10.1142/p1064.![]() ![]() ![]() |
[8] |
R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 1, Masson, Paris, 1985. |
[9] |
L. C. Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Mathematical Society, 2$^{nd}$ edition, 2010.
doi: 10.1090/gsm/019. |
[10] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[11] |
L. Rossi, A. Tellini and E. Valdinoci, The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary, SIAM J. Math. Anal., 49 (2017), 4595–4624.
doi: 10.1137/17M1125388. |
[12] |
A. Tellini,
Propagation speed in a strip bounded by a line with different diffusion, J. Differential Equations, 260 (2016), 5956-5986.
doi: 10.1016/j.jde.2015.12.028. |
show all references
References:
[1] |
H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709.
doi: 10.1137/1018114. |
[2] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., 66 (2013), 743-766.
doi: 10.1007/s00285-012-0604-z. |
[3] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
Fisher-KPP propagation in the presence of a line: Further effects, Nonlinearity, 26 (2013), 2623-2640.
doi: 10.1088/0951-7715/26/9/2623. |
[4] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line with fast diffusion, Nonlinear Analysis, 137 (2016), 171-189.
doi: 10.1016/j.na.2016.01.023. |
[5] |
P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013. |
[6] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkh$\ddot{ a }$user, Basel, Birkh$\ddot{ a }$user Advanced Texts, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[7] |
M. Chipot, Asymptotic Issues for Some Partial Differential Equations, Imperial College Press, London, 2016.
doi: 10.1142/p1064.![]() ![]() ![]() |
[8] |
R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 1, Masson, Paris, 1985. |
[9] |
L. C. Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Mathematical Society, 2$^{nd}$ edition, 2010.
doi: 10.1090/gsm/019. |
[10] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[11] |
L. Rossi, A. Tellini and E. Valdinoci, The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary, SIAM J. Math. Anal., 49 (2017), 4595–4624.
doi: 10.1137/17M1125388. |
[12] |
A. Tellini,
Propagation speed in a strip bounded by a line with different diffusion, J. Differential Equations, 260 (2016), 5956-5986.
doi: 10.1016/j.jde.2015.12.028. |



[1] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[2] |
Matt Holzer. A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2069-2084. doi: 10.3934/dcds.2016.36.2069 |
[3] |
N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079 |
[4] |
Benjamin Contri. Fisher-KPP equations and applications to a model in medical sciences. Networks and Heterogeneous Media, 2018, 13 (1) : 119-153. doi: 10.3934/nhm.2018006 |
[5] |
Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025 |
[6] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[7] |
Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 861-883. doi: 10.3934/cpaa.2012.11.861 |
[8] |
Simone Göttlich, Camill Harter. A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11 (3) : 447-469. doi: 10.3934/nhm.2016004 |
[9] |
Zhongwei Tang, Huafei Xie. Multi-spikes solutions for a system of coupled elliptic equations with quadratic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (1) : 311-328. doi: 10.3934/cpaa.2020017 |
[10] |
Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i |
[11] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control and Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353 |
[12] |
Weiyin Fei, Liangjian Hu, Xuerong Mao, Dengfeng Xia. Advances in the truncated Euler–Maruyama method for stochastic differential delay equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2081-2100. doi: 10.3934/cpaa.2020092 |
[13] |
Maria Francesca Betta, Olivier Guibé, Anna Mercaldo. Uniqueness for Neumann problems for nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1023-1048. doi: 10.3934/cpaa.2019050 |
[14] |
Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033 |
[15] |
Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293 |
[16] |
Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184 |
[17] |
C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189 |
[18] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2505-2518. doi: 10.3934/cpaa.2020272 |
[19] |
Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205 |
[20] |
Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]