• Previous Article
    Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice
  • DCDS Home
  • This Issue
  • Next Article
    Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media
July  2021, 41(7): 3141-3161. doi: 10.3934/dcds.2020401

On some model problem for the propagation of interacting species in a special environment

1. 

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

2. 

School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

3. 

Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France

* Corresponding author: Mingmin Zhang

Received  April 2020 Revised  October 2020 Published  July 2021 Early access  December 2020

The purpose of this note is to study the existence of a nontrivial solution for an elliptic system which comes from a newly introduced mathematical problem so called Field-Road model. Specifically, it consists of coupled equations set in domains of different dimensions together with some interaction of non classical type. We consider a truncated problem by imposing Dirichlet boundary conditions and an unbounded setting as well.

Citation: Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3141-3161. doi: 10.3934/dcds.2020401
References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[2]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., 66 (2013), 743-766.  doi: 10.1007/s00285-012-0604-z.  Google Scholar

[3]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, Fisher-KPP propagation in the presence of a line: Further effects, Nonlinearity, 26 (2013), 2623-2640.  doi: 10.1088/0951-7715/26/9/2623.  Google Scholar

[4]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line with fast diffusion, Nonlinear Analysis, 137 (2016), 171-189.  doi: 10.1016/j.na.2016.01.023.  Google Scholar

[5]

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013.  Google Scholar

[6]

M. Chipot, Elliptic Equations: An Introductory Course, Birkh$\ddot{ a }$user, Basel, Birkh$\ddot{ a }$user Advanced Texts, 2009. doi: 10.1007/978-3-7643-9982-5.  Google Scholar

[7] M. Chipot, Asymptotic Issues for Some Partial Differential Equations, Imperial College Press, London, 2016.  doi: 10.1142/p1064.  Google Scholar
[8]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 1, Masson, Paris, 1985.  Google Scholar

[9]

L. C. Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Mathematical Society, 2$^{nd}$ edition, 2010. doi: 10.1090/gsm/019.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[11]

L. Rossi, A. Tellini and E. Valdinoci, The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary, SIAM J. Math. Anal., 49 (2017), 4595–4624. doi: 10.1137/17M1125388.  Google Scholar

[12]

A. Tellini, Propagation speed in a strip bounded by a line with different diffusion, J. Differential Equations, 260 (2016), 5956-5986.  doi: 10.1016/j.jde.2015.12.028.  Google Scholar

show all references

References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709.  doi: 10.1137/1018114.  Google Scholar

[2]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., 66 (2013), 743-766.  doi: 10.1007/s00285-012-0604-z.  Google Scholar

[3]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, Fisher-KPP propagation in the presence of a line: Further effects, Nonlinearity, 26 (2013), 2623-2640.  doi: 10.1088/0951-7715/26/9/2623.  Google Scholar

[4]

H. BerestyckiJ.-M. Roquejoffre and L. Rossi, Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line with fast diffusion, Nonlinear Analysis, 137 (2016), 171-189.  doi: 10.1016/j.na.2016.01.023.  Google Scholar

[5]

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013.  Google Scholar

[6]

M. Chipot, Elliptic Equations: An Introductory Course, Birkh$\ddot{ a }$user, Basel, Birkh$\ddot{ a }$user Advanced Texts, 2009. doi: 10.1007/978-3-7643-9982-5.  Google Scholar

[7] M. Chipot, Asymptotic Issues for Some Partial Differential Equations, Imperial College Press, London, 2016.  doi: 10.1142/p1064.  Google Scholar
[8]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 1, Masson, Paris, 1985.  Google Scholar

[9]

L. C. Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Mathematical Society, 2$^{nd}$ edition, 2010. doi: 10.1090/gsm/019.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.  Google Scholar

[11]

L. Rossi, A. Tellini and E. Valdinoci, The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary, SIAM J. Math. Anal., 49 (2017), 4595–4624. doi: 10.1137/17M1125388.  Google Scholar

[12]

A. Tellini, Propagation speed in a strip bounded by a line with different diffusion, J. Differential Equations, 260 (2016), 5956-5986.  doi: 10.1016/j.jde.2015.12.028.  Google Scholar

Figure 1.  The domain $ \Omega_\ell $ for one-road problem
Figure 2.  The domain $ \Omega_\ell $ for two-road problem
Figure 3.  The graph of the function $ \rho(x_1) $
[1]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[2]

Matt Holzer. A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2069-2084. doi: 10.3934/dcds.2016.36.2069

[3]

N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079

[4]

Benjamin Contri. Fisher-KPP equations and applications to a model in medical sciences. Networks & Heterogeneous Media, 2018, 13 (1) : 119-153. doi: 10.3934/nhm.2018006

[5]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[6]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[7]

Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 861-883. doi: 10.3934/cpaa.2012.11.861

[8]

Simone Göttlich, Camill Harter. A weakly coupled model of differential equations for thief tracking. Networks & Heterogeneous Media, 2016, 11 (3) : 447-469. doi: 10.3934/nhm.2016004

[9]

Zhongwei Tang, Huafei Xie. Multi-spikes solutions for a system of coupled elliptic equations with quadratic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (1) : 311-328. doi: 10.3934/cpaa.2020017

[10]

Weiyin Fei, Liangjian Hu, Xuerong Mao, Dengfeng Xia. Advances in the truncated Euler–Maruyama method for stochastic differential delay equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2081-2100. doi: 10.3934/cpaa.2020092

[11]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[12]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[13]

Maria Francesca Betta, Olivier Guibé, Anna Mercaldo. Uniqueness for Neumann problems for nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1023-1048. doi: 10.3934/cpaa.2019050

[14]

Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033

[15]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

[16]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[17]

C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, 2021, 20 (7&8) : 2505-2518. doi: 10.3934/cpaa.2020272

[19]

Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205

[20]

Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (158)
  • HTML views (188)
  • Cited by (0)

Other articles
by authors

[Back to Top]