
-
Previous Article
Spatial dynamics and optimization method for a network propagation model in a shifting environment
- DCDS Home
- This Issue
-
Next Article
Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $
On some model problem for the propagation of interacting species in a special environment
1. | Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland |
2. | School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China |
3. | Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France |
The purpose of this note is to study the existence of a nontrivial solution for an elliptic system which comes from a newly introduced mathematical problem so called Field-Road model. Specifically, it consists of coupled equations set in domains of different dimensions together with some interaction of non classical type. We consider a truncated problem by imposing Dirichlet boundary conditions and an unbounded setting as well.
References:
[1] |
H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709.
doi: 10.1137/1018114. |
[2] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., 66 (2013), 743-766.
doi: 10.1007/s00285-012-0604-z. |
[3] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
Fisher-KPP propagation in the presence of a line: Further effects, Nonlinearity, 26 (2013), 2623-2640.
doi: 10.1088/0951-7715/26/9/2623. |
[4] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line with fast diffusion, Nonlinear Analysis, 137 (2016), 171-189.
doi: 10.1016/j.na.2016.01.023. |
[5] |
P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013. |
[6] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkh$\ddot{ a }$user, Basel, Birkh$\ddot{ a }$user Advanced Texts, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[7] |
M. Chipot, Asymptotic Issues for Some Partial Differential Equations, Imperial College Press, London, 2016.
doi: 10.1142/p1064.![]() ![]() |
[8] |
R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 1, Masson, Paris, 1985. |
[9] |
L. C. Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Mathematical Society, 2$^{nd}$ edition, 2010.
doi: 10.1090/gsm/019. |
[10] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[11] |
L. Rossi, A. Tellini and E. Valdinoci, The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary, SIAM J. Math. Anal., 49 (2017), 4595–4624.
doi: 10.1137/17M1125388. |
[12] |
A. Tellini,
Propagation speed in a strip bounded by a line with different diffusion, J. Differential Equations, 260 (2016), 5956-5986.
doi: 10.1016/j.jde.2015.12.028. |
show all references
References:
[1] |
H. Amann,
Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709.
doi: 10.1137/1018114. |
[2] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., 66 (2013), 743-766.
doi: 10.1007/s00285-012-0604-z. |
[3] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
Fisher-KPP propagation in the presence of a line: Further effects, Nonlinearity, 26 (2013), 2623-2640.
doi: 10.1088/0951-7715/26/9/2623. |
[4] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
Travelling waves, spreading and extinction for Fisher-KPP propagation driven by a line with fast diffusion, Nonlinear Analysis, 137 (2016), 171-189.
doi: 10.1016/j.na.2016.01.023. |
[5] |
P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013. |
[6] |
M. Chipot, Elliptic Equations: An Introductory Course, Birkh$\ddot{ a }$user, Basel, Birkh$\ddot{ a }$user Advanced Texts, 2009.
doi: 10.1007/978-3-7643-9982-5. |
[7] |
M. Chipot, Asymptotic Issues for Some Partial Differential Equations, Imperial College Press, London, 2016.
doi: 10.1142/p1064.![]() ![]() |
[8] |
R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 1, Masson, Paris, 1985. |
[9] |
L. C. Evans, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, American Mathematical Society, 2$^{nd}$ edition, 2010.
doi: 10.1090/gsm/019. |
[10] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[11] |
L. Rossi, A. Tellini and E. Valdinoci, The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary, SIAM J. Math. Anal., 49 (2017), 4595–4624.
doi: 10.1137/17M1125388. |
[12] |
A. Tellini,
Propagation speed in a strip bounded by a line with different diffusion, J. Differential Equations, 260 (2016), 5956-5986.
doi: 10.1016/j.jde.2015.12.028. |



[1] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[2] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[3] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[4] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[5] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[6] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[7] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[8] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[9] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[10] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[11] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[12] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[13] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[14] |
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 |
[15] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[16] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[17] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[18] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[19] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[20] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
2019 Impact Factor: 1.338
Tools
Article outline
Figures and Tables
[Back to Top]