This paper establishes the emergence of slowly moving transition layer solutions for the
$ u_t = \varepsilon^p(|u_x|^{p-2}u_x)_x - F'(u), \qquad x \in (a,b), \; t > 0, $
where
$ F(u) = \frac{1}{2\theta}|1-u^2|^\theta, $
indexed by
Citation: |
Figure 1.
Plots of the potential function (1.4) for
Figure 2.
The level of the energy (given by the constant
Figure 4.
Solutions to (1.3) for
Figure 5.
Solutions to (1.3) for
[1] |
M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.
doi: 10.1016/0001-6160(79)90196-2.![]() ![]() |
[2] |
J. Benedikt, P. Girg, L. Kotrla and P. Takáč, Origin of the $p$-Laplacian and A. Missbach, Electron. J. Differ. Eq., 2018 (2018), 1-17.
![]() ![]() |
[3] |
F. Bethuel and D. Smets, Slow motion for equal depth multiple-well gradient systems: The degenerate case, Discrete Contin. Dyn. Syst., 33 (2013), 67-87.
doi: 10.3934/dcds.2013.33.67.![]() ![]() ![]() |
[4] |
L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math., 43 (1990), 983-997.
doi: 10.1002/cpa.3160430804.![]() ![]() ![]() |
[5] |
L. Bronsard and R. V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Differential Equations, 90 (1991), 211-237.
doi: 10.1016/0022-0396(91)90147-2.![]() ![]() ![]() |
[6] |
J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t = \epsilon^2u_xx-f(u)$, Comm. Pure Appl. Math., 42 (1989), 523-576.
doi: 10.1002/cpa.3160420502.![]() ![]() ![]() |
[7] |
J. Carr and R. L. Pego, Invariant manifolds for metastable patterns in $u_t = \epsilon^2u_xx-f(u)$, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 133-160.
doi: 10.1017/S0308210500031425.![]() ![]() ![]() |
[8] |
M. S. Chang, S. C. Lee and C.-C. Yen, Minimizers and gamma-convergence of energy functionals derived from $p$-Laplacian equation, Taiwanese J. Math., 13 (2009), 2021-2036.
doi: 10.11650/twjm/1500405655.![]() ![]() ![]() |
[9] |
X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Differential Equations, 96 (1992), 116-141.
doi: 10.1016/0022-0396(92)90146-E.![]() ![]() ![]() |
[10] |
X. Chen, Generation, propagation, and annihilation of metastable patterns, J. Differential Equations, 206 (2004), 399-437.
doi: 10.1016/j.jde.2004.05.017.![]() ![]() ![]() |
[11] |
P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), 1533-1589.
doi: 10.1090/S0002-9947-1995-1672406-7.![]() ![]() ![]() |
[12] |
E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2.![]() ![]() ![]() |
[13] |
S. Dipierro, A. Farina and E. Valdinoci, Density estimates for degenerate double-well potentials, SIAM J. Math. Anal., 50 (2018), 6333-6347.
doi: 10.1137/17M114933X.![]() ![]() ![]() |
[14] |
S. Dipierro, A. Pinamonti and E. Valdinoci, Rigidity results for elliptic boundary value problems: Stable solutions for quasilinear equations with Neumann or Robin boundary conditions, Int. Math. Res. Not. IMRN, 2020 (2020), 1366-1384.
doi: 10.1093/imrn/rny055.![]() ![]() ![]() |
[15] |
L. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123.
doi: 10.1002/cpa.3160450903.![]() ![]() ![]() |
[16] |
R. Folino, Slow motion for a hyperbolic variation of Allen-Cahn equation in one space dimension, J. Hyperbolic Differ. Equ., 14 (2017), 1-26.
doi: 10.1142/S0219891617500011.![]() ![]() ![]() |
[17] |
R. Folino, Slow motion for one-dimensional nonlinear damped hyperbolic Allen-Cahn systems, Electron. J. Differ. Eq., 2019 (2019), 1-21.
![]() ![]() |
[18] |
R. Folino, C. A. Hernández Melo, L. F. López Ríos and R. G. Plaza, Exponentially slow motion of interface layers for the one-dimensional Allen-Cahn equation with nonlinear phase-dependent diffusivity,, Z. Angew. Math. Phys., 71 (2020), Paper No. 132, 25 pp.
doi: 10.1007/s00033-020-01362-0.![]() ![]() ![]() |
[19] |
R. Folino, C. Lattanzio and C. Mascia, Slow dynamics for the hyperbolic Cahn-Hilliard equation in one-space dimension, Math. Methods Appl. Sci., 42 (2019), 2492-2512.
doi: 10.1002/mma.5525.![]() ![]() ![]() |
[20] |
R. Folino, C. Lattanzio, C. Mascia and M. Strani, Metastability for nonlinear convection-diffusion equations,, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Paper No. 35, 20 pp.
doi: 10.1007/s00030-017-0459-5.![]() ![]() ![]() |
[21] |
R. Folino, R. G. Plaza and M. Strani, Metastable patterns for a reaction-diffusion model with mean curvature-type diffusion,, J. Math. Anal. Appl., 493 (2021), 124455, 29pp.
doi: 10.1016/j.jmaa.2020.124455.![]() ![]() ![]() |
[22] |
G. Fusco and J. K. Hale, Slow-motion manifolds, dormant instability, and singular perturbations, J. Dynam. Differential Equations, 1 (1989), 75-94.
doi: 10.1007/BF01048791.![]() ![]() ![]() |
[23] |
C. P. Grant, Slow motion in one-dimensional Cahn-Morral systems, SIAM J. Math. Anal., 26 (1995), 21-34.
doi: 10.1137/S0036141092226053.![]() ![]() ![]() |
[24] |
E. J. Hurtado and M. Sônego, On the energy functionals derived from a non-homogeneous $p$-Laplacian equation: $\Gamma$-convergence, local minimizers and stable transition layers,, J. Math. Anal. Appl., 483 (2020), 123634, 13pp.
doi: 10.1016/j.jmaa.2019.123634.![]() ![]() ![]() |
[25] |
J. G. L. Laforgue and R. E. O'Malley Jr., Shock layer movement for Burgers' equation, SIAM J. Appl. Math., 55 (1995), 332-347.
doi: 10.1137/S003613999326928X.![]() ![]() ![]() |
[26] |
K. A. Lee, A. Petrosyan and J. L. Vázquez, Large-time geometric properties of solutions of the evolution $p$-Laplacian equation, J. Differential Equations, 229 (2006), 389-411.
doi: 10.1016/j.jde.2005.07.028.![]() ![]() ![]() |
[27] |
P. Lindqvist, Notes on the Stationary $p$-Laplace Equation, SpringerBriefs in Mathematics, Springer, Cham, 2019.
doi: 10.1007/978-3-030-14501-9.![]() ![]() ![]() |
[28] |
J. L. Lions, Quelques Méthodes de Résolution des Problèemes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.
![]() ![]() |
[29] |
B. Lou, Singular limit of a $p$-Laplacian reaction-diffusion equation with a spatially inhomogeneous reaction term, J. Statist. Phys., 110 (2003), 377-383.
doi: 10.1023/A:1021083015108.![]() ![]() ![]() |
[30] |
C. Mascia and M. Strani, Metastability for nonlinear parabolic equations with application to scalar viscous conservation laws, SIAM J. Math. Anal., 45 (2013), 3084-3113.
doi: 10.1137/120875119.![]() ![]() ![]() |
[31] |
F. Otto and M. G. Reznikoff, Slow motion of gradient flows, J. Differential Equations, 237 (2007), 372-420.
doi: 10.1016/j.jde.2007.03.007.![]() ![]() ![]() |
[32] |
A. Petrosyan and E. Valdinoci, Density estimates for a degenerate/singular phase-transition model, SIAM J. Math. Anal., 36 (2005), 1057-1079.
doi: 10.1137/S0036141003437678.![]() ![]() ![]() |
[33] |
L. G. Reyna and M. J. Ward, On the exponentially slow motion of a viscous shock, Comm. Pure Appl. Math., 48 (1995), 79-120.
doi: 10.1002/cpa.3160480202.![]() ![]() ![]() |
[34] |
M. Strani, On the metastable behavior of solutions to a class of parabolic systems, Asymptot. Anal., 90 (2014), 325-344.
doi: 10.3233/ASY-141250.![]() ![]() ![]() |
[35] |
S. Takeuchi and Y. Yamada, Asymptotic properties of a reaction-diffusion equation with degenerate $p$-Laplacian, Nonlinear Anal., 42 (2000), 41-61.
doi: 10.1016/S0362-546X(98)00329-0.![]() ![]() ![]() |