• Previous Article
    Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators
  • DCDS Home
  • This Issue
  • Next Article
    Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions
doi: 10.3934/dcds.2020404

Another point of view on Kusuoka's measure

Dipartimento di Matematica e Fisica, Largo S. Leonardo Murialdo 1, 00146, Roma

Received  December 2019 Revised  September 2020 Published  December 2020

Fund Project: Work partially supported by the PRIN2009 grant "Critical Point Theory and Perturbative Methods for Nonlinear Differential Equations"

Kusuoka's measure on fractals is a Gibbs measure of a very special kind, since its potential is discontinuous while the standard theory of Gibbs measures requires continuous (in its simplest version, Hölder) potentials. In this paper we shall see that for many fractals it is possible to build a class of matrix-valued Gibbs measures completely within the scope of the standard theory; there are naturally some minor modifications, but they are only due to the fact that we are dealing with matrix-valued functions and measures. We shall use these matrix-valued Gibbs measures to build self-similar bilinear forms on fractals. Moreover, we shall see that Kusuoka's measure and bilinear form can be recovered in a simple way from the matrix-valued Gibbs measure.

Citation: Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020404
References:
[1]

M. T. Barlow and R. F. Bass, The construction of Brownian motion on the Sierpinski carpet, Ann. IHP, 25 (1989), 225-257. http://www.numdam.org/item?id=AIHPB_1989__25_3_225_0.  Google Scholar

[2]

M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiski gasket, Probab. Th. Rel. Fields, 79 (1988), 543-623.  doi: 10.1007/BF00318785.  Google Scholar

[3]

R. BellC.-W. Ho and R. S. Strichartz, Energy measures of harmonic functions on the Sierpinski gasket, Indiana Univ. Math, 63 (2014), 831-868.  doi: 10.1512/iumj.2014.63.5256.  Google Scholar

[4]

G. Birkhoff, Lattice Theory, Third Edition, AMS Colloquium Publ., AMS, Providence, R. I., Vol. XXV, 1967.  Google Scholar

[5]

S. Chiari, J. Frisch, D. J. Kelleher and L. G. Rogers, Measurable Riemannian structure on higher dimensional harmonic Sierpinski gaskets, Preprint, (2017). Google Scholar

[6]

D.-J. Feng and A. Käenmäki, Equilibrium states for the pressure function for products of matrices, Discrete Continuous Dynam. Systems, 30 (2011), 699-708.  doi: 10.3934/dcds.2011.30.699.  Google Scholar

[7]

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter, Göttingen, 2011.  Google Scholar

[8]

S. Goldstein, Random walks and diffusions on fractals, in Percolation Theory and Ergodic Theory of Infinite Particle Systems, (ed. H. Kesten), Springer, New York, 121-129, 1987. doi: 10.1007/978-1-4613-8734-3_8.  Google Scholar

[9]

B. M. HamblyV. Metz and A. Teplyaev, Self-similar energies on post-critically finite self-similar fractals, J. London. Math. Soc., 74 (2006), 93-112.  doi: 10.1112/S002461070602312X.  Google Scholar

[10]

F. Hirsch, Opérateurs carré du champ, in Sèminaire Bourbaki, 1978,167-182. doi: 10.1007/BFb0070761.  Google Scholar

[11]

A. JohanssonA. Öberg and M. Pollicott, Ergodic theory of Kusuoka's measures, J. Fractal Geom., 4 (2017), 185-214.  doi: 10.4171/JFG/49.  Google Scholar

[12]

N. Kajino, Analysis and geometry of the measurable Riemannian structure on the Sierpinski gasket, in Contemporary Math., Amer. Math. Soc., Providence, RI, 600 2013. doi: 10.1090/conm/600/11932.  Google Scholar

[13]

J. Kigami, Analysis on Fractals, Cambridge tracts in Math., Cambridge Univ. Press, Cambridge, 143 2001. doi: 10.1017/CBO9780511470943.  Google Scholar

[14]

P. Koskela and Y. Zhou, Geometry and analysis of Dirichlet forms, Adv. Math., 231 (2012), 2755-2801.  doi: 10.1016/j.aim.2012.08.004.  Google Scholar

[15]

S. Kusuoka, A diffusion process on a fractal, in Probabilistic methods in Mathematical Physics, (eds. K. Ito and N. Ikeda) Academic Press, Boston, MA, 1987,251-274.  Google Scholar

[16]

S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci., 25 (1989), 659-680.  doi: 10.2977/prims/1195173187.  Google Scholar

[17]

R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-70335-5.  Google Scholar

[18]

I. D. Morris, Ergodic properties of matrix equilibrium state, Ergodic Theory and Dyn. Sys., 38 (2018), 2295-2320.  doi: 10.1017/etds.2016.117.  Google Scholar

[19]

U. Mosco, Composite media and asymptotic Dirichlet forms, J. Functional Analysis, 123 (1994), 368-421.  doi: 10.1006/jfan.1994.1093.  Google Scholar

[20]

U. Mosco, Variational fractals, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 683-712. http://www.numdam.org/item/?id=ASNSP_1997_4_25_3-4_683_0.  Google Scholar

[21]

R. Peirone, A p. c. f. self similar fractal with no self similar energy, J. Fractal Geom., 6 (2019), 393-404.  doi: 10.4171/JFG/82.  Google Scholar

[22]

R. Peirone, Existence of self-similar energies on finitely ramified fractals, J. Anal. Math., 123 (2014), 35-94.  doi: 10.1007/s11854-014-013-x.  Google Scholar

[23]

R. Peirone, Convergence of Dirichlet forms on fractals, in Topics on Concentration Phenomena and Problems with Multiple Scales, Lect. Notes Unione Mat. Ital. 2, Springer, Berlin, 2006,139-188. doi: 10.1007/978-3-540-36546-4_3.  Google Scholar

[24]

W. Perry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Asterisque, 187-188, 1990.  Google Scholar

[25]

M. Piraino, The weak Bernoulli property for matrix equilibrium states, Ergodic Theory Dynam. Systems, 40 (2020), 2219-2238. doi: 10.1017/etds.2018.129.  Google Scholar

[26]

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974.  Google Scholar

[27]

A. Teplyaev, Harmonic coordinates on fractals with finitely ramified cell structure, Canad. J. Math., 60 (2008), 457-480.  doi: 10.4153/CJM-2008-022-3.  Google Scholar

[28]

M. Viana, Stochastic Analysis of Deterministic Systems, Mimeographed Notes. Google Scholar

show all references

References:
[1]

M. T. Barlow and R. F. Bass, The construction of Brownian motion on the Sierpinski carpet, Ann. IHP, 25 (1989), 225-257. http://www.numdam.org/item?id=AIHPB_1989__25_3_225_0.  Google Scholar

[2]

M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiski gasket, Probab. Th. Rel. Fields, 79 (1988), 543-623.  doi: 10.1007/BF00318785.  Google Scholar

[3]

R. BellC.-W. Ho and R. S. Strichartz, Energy measures of harmonic functions on the Sierpinski gasket, Indiana Univ. Math, 63 (2014), 831-868.  doi: 10.1512/iumj.2014.63.5256.  Google Scholar

[4]

G. Birkhoff, Lattice Theory, Third Edition, AMS Colloquium Publ., AMS, Providence, R. I., Vol. XXV, 1967.  Google Scholar

[5]

S. Chiari, J. Frisch, D. J. Kelleher and L. G. Rogers, Measurable Riemannian structure on higher dimensional harmonic Sierpinski gaskets, Preprint, (2017). Google Scholar

[6]

D.-J. Feng and A. Käenmäki, Equilibrium states for the pressure function for products of matrices, Discrete Continuous Dynam. Systems, 30 (2011), 699-708.  doi: 10.3934/dcds.2011.30.699.  Google Scholar

[7]

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter, Göttingen, 2011.  Google Scholar

[8]

S. Goldstein, Random walks and diffusions on fractals, in Percolation Theory and Ergodic Theory of Infinite Particle Systems, (ed. H. Kesten), Springer, New York, 121-129, 1987. doi: 10.1007/978-1-4613-8734-3_8.  Google Scholar

[9]

B. M. HamblyV. Metz and A. Teplyaev, Self-similar energies on post-critically finite self-similar fractals, J. London. Math. Soc., 74 (2006), 93-112.  doi: 10.1112/S002461070602312X.  Google Scholar

[10]

F. Hirsch, Opérateurs carré du champ, in Sèminaire Bourbaki, 1978,167-182. doi: 10.1007/BFb0070761.  Google Scholar

[11]

A. JohanssonA. Öberg and M. Pollicott, Ergodic theory of Kusuoka's measures, J. Fractal Geom., 4 (2017), 185-214.  doi: 10.4171/JFG/49.  Google Scholar

[12]

N. Kajino, Analysis and geometry of the measurable Riemannian structure on the Sierpinski gasket, in Contemporary Math., Amer. Math. Soc., Providence, RI, 600 2013. doi: 10.1090/conm/600/11932.  Google Scholar

[13]

J. Kigami, Analysis on Fractals, Cambridge tracts in Math., Cambridge Univ. Press, Cambridge, 143 2001. doi: 10.1017/CBO9780511470943.  Google Scholar

[14]

P. Koskela and Y. Zhou, Geometry and analysis of Dirichlet forms, Adv. Math., 231 (2012), 2755-2801.  doi: 10.1016/j.aim.2012.08.004.  Google Scholar

[15]

S. Kusuoka, A diffusion process on a fractal, in Probabilistic methods in Mathematical Physics, (eds. K. Ito and N. Ikeda) Academic Press, Boston, MA, 1987,251-274.  Google Scholar

[16]

S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci., 25 (1989), 659-680.  doi: 10.2977/prims/1195173187.  Google Scholar

[17]

R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-70335-5.  Google Scholar

[18]

I. D. Morris, Ergodic properties of matrix equilibrium state, Ergodic Theory and Dyn. Sys., 38 (2018), 2295-2320.  doi: 10.1017/etds.2016.117.  Google Scholar

[19]

U. Mosco, Composite media and asymptotic Dirichlet forms, J. Functional Analysis, 123 (1994), 368-421.  doi: 10.1006/jfan.1994.1093.  Google Scholar

[20]

U. Mosco, Variational fractals, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 683-712. http://www.numdam.org/item/?id=ASNSP_1997_4_25_3-4_683_0.  Google Scholar

[21]

R. Peirone, A p. c. f. self similar fractal with no self similar energy, J. Fractal Geom., 6 (2019), 393-404.  doi: 10.4171/JFG/82.  Google Scholar

[22]

R. Peirone, Existence of self-similar energies on finitely ramified fractals, J. Anal. Math., 123 (2014), 35-94.  doi: 10.1007/s11854-014-013-x.  Google Scholar

[23]

R. Peirone, Convergence of Dirichlet forms on fractals, in Topics on Concentration Phenomena and Problems with Multiple Scales, Lect. Notes Unione Mat. Ital. 2, Springer, Berlin, 2006,139-188. doi: 10.1007/978-3-540-36546-4_3.  Google Scholar

[24]

W. Perry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Asterisque, 187-188, 1990.  Google Scholar

[25]

M. Piraino, The weak Bernoulli property for matrix equilibrium states, Ergodic Theory Dynam. Systems, 40 (2020), 2219-2238. doi: 10.1017/etds.2018.129.  Google Scholar

[26]

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974.  Google Scholar

[27]

A. Teplyaev, Harmonic coordinates on fractals with finitely ramified cell structure, Canad. J. Math., 60 (2008), 457-480.  doi: 10.4153/CJM-2008-022-3.  Google Scholar

[28]

M. Viana, Stochastic Analysis of Deterministic Systems, Mimeographed Notes. Google Scholar

Figure 1.  The first stage of the harmonic gasket
[1]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[2]

Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021016

[3]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[4]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[5]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[6]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[7]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[8]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[9]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[10]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[11]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[12]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[13]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[14]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[15]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[16]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[17]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[18]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[19]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[20]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (9)
  • HTML views (53)
  • Cited by (0)

Other articles
by authors

[Back to Top]