
-
Previous Article
Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators
- DCDS Home
- This Issue
-
Next Article
Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions
Another point of view on Kusuoka's measure
Dipartimento di Matematica e Fisica, Largo S. Leonardo Murialdo 1, 00146, Roma |
Kusuoka's measure on fractals is a Gibbs measure of a very special kind, since its potential is discontinuous while the standard theory of Gibbs measures requires continuous (in its simplest version, Hölder) potentials. In this paper we shall see that for many fractals it is possible to build a class of matrix-valued Gibbs measures completely within the scope of the standard theory; there are naturally some minor modifications, but they are only due to the fact that we are dealing with matrix-valued functions and measures. We shall use these matrix-valued Gibbs measures to build self-similar bilinear forms on fractals. Moreover, we shall see that Kusuoka's measure and bilinear form can be recovered in a simple way from the matrix-valued Gibbs measure.
References:
[1] |
M. T. Barlow and R. F. Bass, The construction of Brownian motion on the Sierpinski carpet, Ann. IHP, 25 (1989), 225-257. http://www.numdam.org/item?id=AIHPB_1989__25_3_225_0. |
[2] |
M. T. Barlow and E. A. Perkins,
Brownian motion on the Sierpiski gasket, Probab. Th. Rel. Fields, 79 (1988), 543-623.
doi: 10.1007/BF00318785. |
[3] |
R. Bell, C.-W. Ho and R. S. Strichartz,
Energy measures of harmonic functions on the Sierpinski gasket, Indiana Univ. Math, 63 (2014), 831-868.
doi: 10.1512/iumj.2014.63.5256. |
[4] |
G. Birkhoff, Lattice Theory, Third Edition, AMS Colloquium Publ., AMS, Providence, R. I., Vol. XXV, 1967. |
[5] |
S. Chiari, J. Frisch, D. J. Kelleher and L. G. Rogers, Measurable Riemannian structure on higher dimensional harmonic Sierpinski gaskets, Preprint, (2017). Google Scholar |
[6] |
D.-J. Feng and A. Käenmäki,
Equilibrium states for the pressure function for products of matrices, Discrete Continuous Dynam. Systems, 30 (2011), 699-708.
doi: 10.3934/dcds.2011.30.699. |
[7] |
M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter, Göttingen, 2011. |
[8] |
S. Goldstein, Random walks and diffusions on fractals, in Percolation Theory and Ergodic Theory of Infinite Particle Systems, (ed. H. Kesten), Springer, New York, 121-129, 1987.
doi: 10.1007/978-1-4613-8734-3_8. |
[9] |
B. M. Hambly, V. Metz and A. Teplyaev,
Self-similar energies on post-critically finite self-similar fractals, J. London. Math. Soc., 74 (2006), 93-112.
doi: 10.1112/S002461070602312X. |
[10] |
F. Hirsch, Opérateurs carré du champ, in Sèminaire Bourbaki, 1978,167-182.
doi: 10.1007/BFb0070761. |
[11] |
A. Johansson, A. Öberg and M. Pollicott,
Ergodic theory of Kusuoka's measures, J. Fractal Geom., 4 (2017), 185-214.
doi: 10.4171/JFG/49. |
[12] |
N. Kajino, Analysis and geometry of the measurable Riemannian structure on the Sierpinski gasket, in Contemporary Math., Amer. Math. Soc., Providence, RI, 600 2013.
doi: 10.1090/conm/600/11932. |
[13] |
J. Kigami, Analysis on Fractals, Cambridge tracts in Math., Cambridge Univ. Press, Cambridge, 143 2001.
doi: 10.1017/CBO9780511470943. |
[14] |
P. Koskela and Y. Zhou,
Geometry and analysis of Dirichlet forms, Adv. Math., 231 (2012), 2755-2801.
doi: 10.1016/j.aim.2012.08.004. |
[15] |
S. Kusuoka, A diffusion process on a fractal, in Probabilistic methods in Mathematical Physics, (eds. K. Ito and N. Ikeda) Academic Press, Boston, MA, 1987,251-274. |
[16] |
S. Kusuoka,
Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci., 25 (1989), 659-680.
doi: 10.2977/prims/1195173187. |
[17] |
R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-70335-5. |
[18] |
I. D. Morris,
Ergodic properties of matrix equilibrium state, Ergodic Theory and Dyn. Sys., 38 (2018), 2295-2320.
doi: 10.1017/etds.2016.117. |
[19] |
U. Mosco,
Composite media and asymptotic Dirichlet forms, J. Functional Analysis, 123 (1994), 368-421.
doi: 10.1006/jfan.1994.1093. |
[20] |
U. Mosco, Variational fractals, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 683-712. http://www.numdam.org/item/?id=ASNSP_1997_4_25_3-4_683_0. |
[21] |
R. Peirone,
A p. c. f. self similar fractal with no self similar energy, J. Fractal Geom., 6 (2019), 393-404.
doi: 10.4171/JFG/82. |
[22] |
R. Peirone,
Existence of self-similar energies on finitely ramified fractals, J. Anal. Math., 123 (2014), 35-94.
doi: 10.1007/s11854-014-013-x. |
[23] |
R. Peirone, Convergence of Dirichlet forms on fractals, in Topics on Concentration Phenomena and Problems with Multiple Scales, Lect. Notes Unione Mat. Ital. 2, Springer, Berlin, 2006,139-188.
doi: 10.1007/978-3-540-36546-4_3. |
[24] |
W. Perry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Asterisque, 187-188, 1990. |
[25] |
M. Piraino, The weak Bernoulli property for matrix equilibrium states, Ergodic Theory Dynam. Systems, 40 (2020), 2219-2238.
doi: 10.1017/etds.2018.129. |
[26] |
W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. |
[27] |
A. Teplyaev,
Harmonic coordinates on fractals with finitely ramified cell structure, Canad. J. Math., 60 (2008), 457-480.
doi: 10.4153/CJM-2008-022-3. |
[28] |
M. Viana, Stochastic Analysis of Deterministic Systems, Mimeographed Notes. Google Scholar |
show all references
References:
[1] |
M. T. Barlow and R. F. Bass, The construction of Brownian motion on the Sierpinski carpet, Ann. IHP, 25 (1989), 225-257. http://www.numdam.org/item?id=AIHPB_1989__25_3_225_0. |
[2] |
M. T. Barlow and E. A. Perkins,
Brownian motion on the Sierpiski gasket, Probab. Th. Rel. Fields, 79 (1988), 543-623.
doi: 10.1007/BF00318785. |
[3] |
R. Bell, C.-W. Ho and R. S. Strichartz,
Energy measures of harmonic functions on the Sierpinski gasket, Indiana Univ. Math, 63 (2014), 831-868.
doi: 10.1512/iumj.2014.63.5256. |
[4] |
G. Birkhoff, Lattice Theory, Third Edition, AMS Colloquium Publ., AMS, Providence, R. I., Vol. XXV, 1967. |
[5] |
S. Chiari, J. Frisch, D. J. Kelleher and L. G. Rogers, Measurable Riemannian structure on higher dimensional harmonic Sierpinski gaskets, Preprint, (2017). Google Scholar |
[6] |
D.-J. Feng and A. Käenmäki,
Equilibrium states for the pressure function for products of matrices, Discrete Continuous Dynam. Systems, 30 (2011), 699-708.
doi: 10.3934/dcds.2011.30.699. |
[7] |
M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter, Göttingen, 2011. |
[8] |
S. Goldstein, Random walks and diffusions on fractals, in Percolation Theory and Ergodic Theory of Infinite Particle Systems, (ed. H. Kesten), Springer, New York, 121-129, 1987.
doi: 10.1007/978-1-4613-8734-3_8. |
[9] |
B. M. Hambly, V. Metz and A. Teplyaev,
Self-similar energies on post-critically finite self-similar fractals, J. London. Math. Soc., 74 (2006), 93-112.
doi: 10.1112/S002461070602312X. |
[10] |
F. Hirsch, Opérateurs carré du champ, in Sèminaire Bourbaki, 1978,167-182.
doi: 10.1007/BFb0070761. |
[11] |
A. Johansson, A. Öberg and M. Pollicott,
Ergodic theory of Kusuoka's measures, J. Fractal Geom., 4 (2017), 185-214.
doi: 10.4171/JFG/49. |
[12] |
N. Kajino, Analysis and geometry of the measurable Riemannian structure on the Sierpinski gasket, in Contemporary Math., Amer. Math. Soc., Providence, RI, 600 2013.
doi: 10.1090/conm/600/11932. |
[13] |
J. Kigami, Analysis on Fractals, Cambridge tracts in Math., Cambridge Univ. Press, Cambridge, 143 2001.
doi: 10.1017/CBO9780511470943. |
[14] |
P. Koskela and Y. Zhou,
Geometry and analysis of Dirichlet forms, Adv. Math., 231 (2012), 2755-2801.
doi: 10.1016/j.aim.2012.08.004. |
[15] |
S. Kusuoka, A diffusion process on a fractal, in Probabilistic methods in Mathematical Physics, (eds. K. Ito and N. Ikeda) Academic Press, Boston, MA, 1987,251-274. |
[16] |
S. Kusuoka,
Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci., 25 (1989), 659-680.
doi: 10.2977/prims/1195173187. |
[17] |
R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-70335-5. |
[18] |
I. D. Morris,
Ergodic properties of matrix equilibrium state, Ergodic Theory and Dyn. Sys., 38 (2018), 2295-2320.
doi: 10.1017/etds.2016.117. |
[19] |
U. Mosco,
Composite media and asymptotic Dirichlet forms, J. Functional Analysis, 123 (1994), 368-421.
doi: 10.1006/jfan.1994.1093. |
[20] |
U. Mosco, Variational fractals, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 683-712. http://www.numdam.org/item/?id=ASNSP_1997_4_25_3-4_683_0. |
[21] |
R. Peirone,
A p. c. f. self similar fractal with no self similar energy, J. Fractal Geom., 6 (2019), 393-404.
doi: 10.4171/JFG/82. |
[22] |
R. Peirone,
Existence of self-similar energies on finitely ramified fractals, J. Anal. Math., 123 (2014), 35-94.
doi: 10.1007/s11854-014-013-x. |
[23] |
R. Peirone, Convergence of Dirichlet forms on fractals, in Topics on Concentration Phenomena and Problems with Multiple Scales, Lect. Notes Unione Mat. Ital. 2, Springer, Berlin, 2006,139-188.
doi: 10.1007/978-3-540-36546-4_3. |
[24] |
W. Perry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Asterisque, 187-188, 1990. |
[25] |
M. Piraino, The weak Bernoulli property for matrix equilibrium states, Ergodic Theory Dynam. Systems, 40 (2020), 2219-2238.
doi: 10.1017/etds.2018.129. |
[26] |
W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. |
[27] |
A. Teplyaev,
Harmonic coordinates on fractals with finitely ramified cell structure, Canad. J. Math., 60 (2008), 457-480.
doi: 10.4153/CJM-2008-022-3. |
[28] |
M. Viana, Stochastic Analysis of Deterministic Systems, Mimeographed Notes. Google Scholar |

[1] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[2] |
Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021016 |
[3] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[4] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[5] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[6] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[7] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[8] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[9] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[10] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[11] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[12] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[13] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[14] |
Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020129 |
[15] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[16] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[17] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[18] |
Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169 |
[19] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[20] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
2019 Impact Factor: 1.338
Tools
Article outline
Figures and Tables
[Back to Top]