July  2021, 41(7): 3273-3293. doi: 10.3934/dcds.2020405

$ BV $ solution for a non-linear Hamilton-Jacobi system

1. 

Université de Technologie de Compiègne, LMAC, 60205 Compiègne Cedex, France

2. 

Université Libanaise, EDST, Hadath, Beyrouth, Liban

* Corresponding author: Ahmad El Hajj

Received  February 2020 Revised  November 2020 Published  July 2021 Early access  December 2020

In this work, we are dealing with a non-linear eikonal system in one dimensional space that describes the evolution of interfaces moving with non-signed strongly coupled velocities. For such kind of systems, previous results on the existence and uniqueness are available for quasi-monotone systems and other special systems in Lipschitz continuous space. It is worth mentioning that our system includes, in particular, the case of non-decreasing solution where some existence and uniqueness results arose for strictly hyperbolic systems with a small total variation. In the present paper, we consider initial data with unnecessarily small $ BV $ seminorm, and we use some $ BV $ bounds to prove a global-in-time existence result of this system in the framework of discontinuous viscosity solution.

Citation: Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variations and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000.  Google Scholar

[2]

G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: A guided visit, Nonlinear Anal., 20 (1993), 1123-1134.  doi: 10.1016/0362-546X(93)90098-D.  Google Scholar

[3]

G. Barles, Solutions de Viscosité Des Équations de Hamilton-Jacobi, vol. 17 of Mathématiques et Applications (Berlin), Springer-Verlag, Paris, 1994.  Google Scholar

[4]

G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim., 26 (1988), 1133-1148.  doi: 10.1137/0326063.  Google Scholar

[5]

G. Barles and B. Perthame, Comparison principle for Dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations, Appl. Math. Optim., 21 (1990), 21-44.  doi: 10.1007/BF01445155.  Google Scholar

[6]

G. BarlesH. M. Soner and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim, 31 (1993), 439-496.  doi: 10.1137/0331021.  Google Scholar

[7]

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. Math., 161 (2005), 223-342.  doi: 10.4007/annals.2005.161.223.  Google Scholar

[8]

R. Boudjerada and A. El Hajj, Global existence results for eikonal equation with $BV$ initial data, Nonlinear Differ. Equ. Appl., 22 (2015), 947-978.  doi: 10.1007/s00030-015-0310-9.  Google Scholar

[9]

M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[10]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[11]

R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Ration. Mech. Anal., 82 (1983), 27-70.  doi: 10.1007/BF00251724.  Google Scholar

[12]

R. J. DiPerna, Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc., 292 (1985), 383-420.  doi: 10.1090/S0002-9947-1985-0808729-4.  Google Scholar

[13]

A. El Hajj and N. Forcadel, A convergent scheme for a non-local coupled system modelling dislocation densities dynamics, Math. Comp., 77 (2008), 789-812.  doi: 10.1090/S0025-5718-07-02038-8.  Google Scholar

[14]

A. El HajjH. Ibrahim and V. Rizik, Global $BV$ solution for a non-local coupled system modeling the dynamics of dislocation densities, J. Differential Equations, 264 (2018), 1750-1785.  doi: 10.1016/j.jde.2017.10.004.  Google Scholar

[15]

A. El Hajj and R. Monneau, Uniqueness results for diagonal hyperbolic systems with large and monotone data, J. Hyper. Differ. Equ., 10 (2013), 461-494.  doi: 10.1142/S0219891613500161.  Google Scholar

[16]

A. El Hajj and R. Monneau, Global continuous solutions for diagonal hyperbolic systems with large and monotone data, J. Hyper. Differ. Equ., 7 (2010), 139-164.  doi: 10.1142/S0219891610002050.  Google Scholar

[17]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18 (1965), 697-715.  doi: 10.1002/cpa.3160180408.  Google Scholar

[18]

H. Ishii, Perron's method for monotone systems of second-order elliptic partial differential equations, Differential Integral Equations, 5 (1992), 1-24.   Google Scholar

[19]

H. Ishii and S. Koike, Viscosity solution for monotone systems of second-order elliptic PDEs, Comm. Partial Differential Equations, 16 (1991), 1095-1128.  doi: 10.1080/03605309108820791.  Google Scholar

[20]

P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS Regional Conference Series in Mathematics, Vol. 11 (SIAM, Philadelphia, 1973).  Google Scholar

[21]

P. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form, Commun. Partial Differential Equations, 13 (1988), 669-727.  doi: 10.1080/03605308808820557.  Google Scholar

[22]

P. LeFloch and T.-P. Liu, Existence theory for nonlinear hyperbolic systems in nonconservative form, Forum Math., 5 (1993), 261-280.  doi: 10.1515/form.1993.5.261.  Google Scholar

[23]

O. Ley, Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts, Adv. Differential Equations, 6 (2001), 547-576.   Google Scholar

[24]

J. Simon, Compacts sets in the space $L^p(0; T; B)$, Ann. Mat. Pura. Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variations and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000.  Google Scholar

[2]

G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: A guided visit, Nonlinear Anal., 20 (1993), 1123-1134.  doi: 10.1016/0362-546X(93)90098-D.  Google Scholar

[3]

G. Barles, Solutions de Viscosité Des Équations de Hamilton-Jacobi, vol. 17 of Mathématiques et Applications (Berlin), Springer-Verlag, Paris, 1994.  Google Scholar

[4]

G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim., 26 (1988), 1133-1148.  doi: 10.1137/0326063.  Google Scholar

[5]

G. Barles and B. Perthame, Comparison principle for Dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations, Appl. Math. Optim., 21 (1990), 21-44.  doi: 10.1007/BF01445155.  Google Scholar

[6]

G. BarlesH. M. Soner and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim, 31 (1993), 439-496.  doi: 10.1137/0331021.  Google Scholar

[7]

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. Math., 161 (2005), 223-342.  doi: 10.4007/annals.2005.161.223.  Google Scholar

[8]

R. Boudjerada and A. El Hajj, Global existence results for eikonal equation with $BV$ initial data, Nonlinear Differ. Equ. Appl., 22 (2015), 947-978.  doi: 10.1007/s00030-015-0310-9.  Google Scholar

[9]

M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[10]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[11]

R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Ration. Mech. Anal., 82 (1983), 27-70.  doi: 10.1007/BF00251724.  Google Scholar

[12]

R. J. DiPerna, Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc., 292 (1985), 383-420.  doi: 10.1090/S0002-9947-1985-0808729-4.  Google Scholar

[13]

A. El Hajj and N. Forcadel, A convergent scheme for a non-local coupled system modelling dislocation densities dynamics, Math. Comp., 77 (2008), 789-812.  doi: 10.1090/S0025-5718-07-02038-8.  Google Scholar

[14]

A. El HajjH. Ibrahim and V. Rizik, Global $BV$ solution for a non-local coupled system modeling the dynamics of dislocation densities, J. Differential Equations, 264 (2018), 1750-1785.  doi: 10.1016/j.jde.2017.10.004.  Google Scholar

[15]

A. El Hajj and R. Monneau, Uniqueness results for diagonal hyperbolic systems with large and monotone data, J. Hyper. Differ. Equ., 10 (2013), 461-494.  doi: 10.1142/S0219891613500161.  Google Scholar

[16]

A. El Hajj and R. Monneau, Global continuous solutions for diagonal hyperbolic systems with large and monotone data, J. Hyper. Differ. Equ., 7 (2010), 139-164.  doi: 10.1142/S0219891610002050.  Google Scholar

[17]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18 (1965), 697-715.  doi: 10.1002/cpa.3160180408.  Google Scholar

[18]

H. Ishii, Perron's method for monotone systems of second-order elliptic partial differential equations, Differential Integral Equations, 5 (1992), 1-24.   Google Scholar

[19]

H. Ishii and S. Koike, Viscosity solution for monotone systems of second-order elliptic PDEs, Comm. Partial Differential Equations, 16 (1991), 1095-1128.  doi: 10.1080/03605309108820791.  Google Scholar

[20]

P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS Regional Conference Series in Mathematics, Vol. 11 (SIAM, Philadelphia, 1973).  Google Scholar

[21]

P. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form, Commun. Partial Differential Equations, 13 (1988), 669-727.  doi: 10.1080/03605308808820557.  Google Scholar

[22]

P. LeFloch and T.-P. Liu, Existence theory for nonlinear hyperbolic systems in nonconservative form, Forum Math., 5 (1993), 261-280.  doi: 10.1515/form.1993.5.261.  Google Scholar

[23]

O. Ley, Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts, Adv. Differential Equations, 6 (2001), 547-576.   Google Scholar

[24]

J. Simon, Compacts sets in the space $L^p(0; T; B)$, Ann. Mat. Pura. Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[1]

Ahmad El Hajj, Aya Oussaily. Continuous solution for a non-linear eikonal system. Communications on Pure & Applied Analysis, 2021, 20 (11) : 3795-3823. doi: 10.3934/cpaa.2021131

[2]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[3]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[4]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[5]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : i-iv. doi: 10.3934/dcdss.201702i

[6]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165

[7]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[8]

Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems & Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675

[9]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[10]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[11]

Anugu Sumith Reddy, Amit Apte. Stability of non-linear filter for deterministic dynamics. Foundations of Data Science, 2021, 3 (3) : 647-675. doi: 10.3934/fods.2021025

[12]

Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1

[13]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[14]

Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883

[15]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[16]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations & Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193

[17]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[18]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[19]

Tarek Saanouni. Non-linear bi-harmonic Choquard equations. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5033-5057. doi: 10.3934/cpaa.2020221

[20]

Hamza Khalfi, Amal Aarab, Nour Eddine Alaa. Energetics and coarsening analysis of a simplified non-linear surface growth model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021014

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (123)
  • HTML views (162)
  • Cited by (0)

Other articles
by authors

[Back to Top]