July  2021, 41(7): 3295-3317. doi: 10.3934/dcds.2020406

Complex planar Hamiltonian systems: Linearization and dynamics

1. 

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

2. 

School of Mathematical Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China

* Corresponding author: Xiang Zhang

Received  March 2020 Revised  October 2020 Published  July 2021 Early access  December 2020

Fund Project: The third author is partially supported by NNSF of China grant numbers 11671254, 11871334 and 12071284, and also by Innovation Program of Shanghai Municipal Education Commission

Global dynamics of complex planar Hamiltonian polynomial systems is difficult to be characterized. In this paper, for general complex quadratic Hamiltonian systems of one degree of freedom, we obtain some sufficient conditions on the existence of family of invariant tori. We also complete characterization on locally analytic linearizability of complex planar Hamiltonian systems with homogeneous nonlinearity of degrees either 2 or 3 at a nondegenerate singularity, and present their global dynamics. For these classes of systems we also prove existence of families of invariant tori, together with isochronous periodic orbits.

Citation: Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406
References:
[1]

M. J. AlvarezA. Gasull and R. Prohens, Topological classification of polynomial complex differential equations with all the critical points of centre type, J. Difference Equ. Appl., 16 (2010), 411-423.  doi: 10.1080/10236190903232654.

[2]

V. I. Arnold, Ordinary Differential Equations (third edition), Springer–Verlag, Berlin, 1992.

[3]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (third edition), Encyclopaedia of Mathematical Sciences, 3, Springer–Verlag, Berlin, 2006.

[4]

J. C. Artés and J. Llibre, Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.  doi: 10.1006/jdeq.1994.1004.

[5]

A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems: Geometry, Topology, Classification, Chapman & Hall/CRC, Boca Raton, 2004. doi: 10.1201/9780203643426.

[6]

L. CairóJ. ChavarrigaJ. Giné and J. Llibre, A class of reversible cubic systems with an isochronous center, Comput. Math. Appl., 38 (1999), 39-53.  doi: 10.1016/S0898-1221(99)00283-7.

[7]

J. ChavarrigaI. A. García and J. Giné, Isochronicity into a family of time–reversible cubic vector fields, Appl. Math. Comput., 121 (2001), 129-145.  doi: 10.1016/S0096-3003(99)00267-2.

[8]

J. ChavarrigaJ. Giné and I. A. García, Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials, J. Comput. Appl. Math., 126 (2000), 351-368.  doi: 10.1016/S0377-0427(99)00364-7.

[9]

J. ChavarrigaJ. Giné and I. A. García, Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial, Bull. Sci. Math., 123 (1999), 77-96.  doi: 10.1016/S0007-4497(99)80015-3.

[10]

J. Chavarriga and M. Sabatini, A survey of isochronous centers, Qual. Theory Dyn. Syst., 1 (1999), 1-70.  doi: 10.1007/BF02969404.

[11]

C. J. Christopher and J. Devlin, Isochronous centers in planar polynomial systems, SIAM J. Math. Anal., 28 (1997), 162-177.  doi: 10.1137/S0036141093259245.

[12]

A. CimaA. Gasull and F. Ma$\widetilde{n}$osas, Period function for a class of Hamiltonian systems, J. Differential Equations, 168 (2000), 180-199.  doi: 10.1006/jdeq.2000.3912.

[13]

A. CimaF. Mañosas and J. Villadelprat, Isochronicity for several classes of Hamiltonian systems, J. Differential Equations, 157 (1999), 373-413.  doi: 10.1006/jdeq.1999.3635.

[14]

L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case, Comment. Math. Helv., 65 (1990), 4-35.  doi: 10.1007/BF02566590.

[15]

A. GarijoA. Gasull and X. Jarque, Local and global phase portrait of equation $z^\prime = f(z)$, Discrete Contin. Dyn. Syst., 17 (2007), 309-329.  doi: 10.3934/dcds.2007.17.309.

[16]

A. Gasull, J. Llibre and X. Zhang, One–dimensional quaternion homogeneous polynomial differential equations, J. Mathematical Physics, 50 (2009), 082705. doi: 10.1063/1.3139115.

[17]

J. Giné and J. Llibre, On the planar integrable differential systems, Z. Angew. Math. Phys., 62 (2011), 567-574.  doi: 10.1007/s00033-011-0116-5.

[18]

H. Ito, Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case, Math. Ann., 292 (1992), 411-444.  doi: 10.1007/BF01444629.

[19]

X. Jarque and J. Villadelprat, Nonexistence of isochronous centers in planar polynomial Hamiltonian systems of degree four, J. Differential Equations, 180 (2002), 334-373.  doi: 10.1006/jdeq.2001.4065.

[20]

L. M. Lerman and Ya. L. Umanskiy, Four–Dimensional Integrable Hamiltonian Systems with Simple Singular Points (topological aspects), Translations of Mathmatical Monographs, American Mathematical Society, Providence, Rhode Island, 1998. doi: 10.1090/mmono/176.

[21]

J. Llibre, Integrability of Polynomial Differential Systems, Handbook of differential equations, Elsevier/North-Holland, Amsterdam, 2004,437–532.

[22]

J. Llibre and V. G. Romanovski, Isochronicity and linearizability of planar polynomial Hamiltonian systems, J. Differential Equations, 259 (2015), 1649-1662.  doi: 10.1016/j.jde.2015.03.009.

[23]

J. LlibreC. Valls and X Zhang, The completely integrable differential systems are essentially linear differential systems, J. Nonlinear Sci., 25 (2015), 815-826.  doi: 10.1007/s00332-015-9243-z.

[24]

W. S. Loud, Behaviour of the period of solutions of certain plane autonomous systems near centers, Contrib. Differential Equations, 3 (1964), 21-36. 

[25]

P. MardešićC. Rousseau and B. Toni, Linearization of isochronous centers, J. Differential Equations, 121 (1995), 67-108.  doi: 10.1006/jdeq.1995.1122.

[26]

J. Moser, On the generalization of a theorem of A. Liapounoff, Comm. Pure Appl. Math., 11 (1958), 257-271.  doi: 10.1002/cpa.3160110208.

[27]

H. Rũssmann, Ũber das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nãhe einer Gleichgewichtslõsung, Math. Ann., 154 (1964), 285-300.  doi: 10.1007/BF01362565.

[28]

J. Vey, Sur certains systèmes dynamiques séparables, Amer. J. Math., 100 (1978), 591-614.  doi: 10.2307/2373841.

[29]

S. Vũ Ngoc, On semi-global invariants for focus-focus singularities, Topology, 42 (2003), 365-380.  doi: 10.1016/S0040-9383(01)00026-X.

[30]

X. Zhang, Global structure of quaternion polynomial differential equations, Comm. Math. Phys., 303 (2011), 301-316.  doi: 10.1007/s00220-011-1196-y.

[31]

X. Zhang, Liouvillian integrability of polynomial differential systems, Trans. Amer. Math. Soc., 368 (2016), 607-620.  doi: 10.1090/S0002-9947-2014-06387-3.

[32]

X. Zhang, Integrability of Dynamical Systems: Algebra and Analysis, Developments in Mathematics, Vol. 47, Springer, Singapore, 2017. doi: 10.1007/978-981-10-4226-3.

[33]

N. T. Zung, Convergence versus integrability in Birkhoff normal form, Ann. Math., 161 (2005) 141–156. doi: 10.4007/annals.2005.161.141.

show all references

References:
[1]

M. J. AlvarezA. Gasull and R. Prohens, Topological classification of polynomial complex differential equations with all the critical points of centre type, J. Difference Equ. Appl., 16 (2010), 411-423.  doi: 10.1080/10236190903232654.

[2]

V. I. Arnold, Ordinary Differential Equations (third edition), Springer–Verlag, Berlin, 1992.

[3]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (third edition), Encyclopaedia of Mathematical Sciences, 3, Springer–Verlag, Berlin, 2006.

[4]

J. C. Artés and J. Llibre, Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.  doi: 10.1006/jdeq.1994.1004.

[5]

A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems: Geometry, Topology, Classification, Chapman & Hall/CRC, Boca Raton, 2004. doi: 10.1201/9780203643426.

[6]

L. CairóJ. ChavarrigaJ. Giné and J. Llibre, A class of reversible cubic systems with an isochronous center, Comput. Math. Appl., 38 (1999), 39-53.  doi: 10.1016/S0898-1221(99)00283-7.

[7]

J. ChavarrigaI. A. García and J. Giné, Isochronicity into a family of time–reversible cubic vector fields, Appl. Math. Comput., 121 (2001), 129-145.  doi: 10.1016/S0096-3003(99)00267-2.

[8]

J. ChavarrigaJ. Giné and I. A. García, Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials, J. Comput. Appl. Math., 126 (2000), 351-368.  doi: 10.1016/S0377-0427(99)00364-7.

[9]

J. ChavarrigaJ. Giné and I. A. García, Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial, Bull. Sci. Math., 123 (1999), 77-96.  doi: 10.1016/S0007-4497(99)80015-3.

[10]

J. Chavarriga and M. Sabatini, A survey of isochronous centers, Qual. Theory Dyn. Syst., 1 (1999), 1-70.  doi: 10.1007/BF02969404.

[11]

C. J. Christopher and J. Devlin, Isochronous centers in planar polynomial systems, SIAM J. Math. Anal., 28 (1997), 162-177.  doi: 10.1137/S0036141093259245.

[12]

A. CimaA. Gasull and F. Ma$\widetilde{n}$osas, Period function for a class of Hamiltonian systems, J. Differential Equations, 168 (2000), 180-199.  doi: 10.1006/jdeq.2000.3912.

[13]

A. CimaF. Mañosas and J. Villadelprat, Isochronicity for several classes of Hamiltonian systems, J. Differential Equations, 157 (1999), 373-413.  doi: 10.1006/jdeq.1999.3635.

[14]

L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case, Comment. Math. Helv., 65 (1990), 4-35.  doi: 10.1007/BF02566590.

[15]

A. GarijoA. Gasull and X. Jarque, Local and global phase portrait of equation $z^\prime = f(z)$, Discrete Contin. Dyn. Syst., 17 (2007), 309-329.  doi: 10.3934/dcds.2007.17.309.

[16]

A. Gasull, J. Llibre and X. Zhang, One–dimensional quaternion homogeneous polynomial differential equations, J. Mathematical Physics, 50 (2009), 082705. doi: 10.1063/1.3139115.

[17]

J. Giné and J. Llibre, On the planar integrable differential systems, Z. Angew. Math. Phys., 62 (2011), 567-574.  doi: 10.1007/s00033-011-0116-5.

[18]

H. Ito, Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case, Math. Ann., 292 (1992), 411-444.  doi: 10.1007/BF01444629.

[19]

X. Jarque and J. Villadelprat, Nonexistence of isochronous centers in planar polynomial Hamiltonian systems of degree four, J. Differential Equations, 180 (2002), 334-373.  doi: 10.1006/jdeq.2001.4065.

[20]

L. M. Lerman and Ya. L. Umanskiy, Four–Dimensional Integrable Hamiltonian Systems with Simple Singular Points (topological aspects), Translations of Mathmatical Monographs, American Mathematical Society, Providence, Rhode Island, 1998. doi: 10.1090/mmono/176.

[21]

J. Llibre, Integrability of Polynomial Differential Systems, Handbook of differential equations, Elsevier/North-Holland, Amsterdam, 2004,437–532.

[22]

J. Llibre and V. G. Romanovski, Isochronicity and linearizability of planar polynomial Hamiltonian systems, J. Differential Equations, 259 (2015), 1649-1662.  doi: 10.1016/j.jde.2015.03.009.

[23]

J. LlibreC. Valls and X Zhang, The completely integrable differential systems are essentially linear differential systems, J. Nonlinear Sci., 25 (2015), 815-826.  doi: 10.1007/s00332-015-9243-z.

[24]

W. S. Loud, Behaviour of the period of solutions of certain plane autonomous systems near centers, Contrib. Differential Equations, 3 (1964), 21-36. 

[25]

P. MardešićC. Rousseau and B. Toni, Linearization of isochronous centers, J. Differential Equations, 121 (1995), 67-108.  doi: 10.1006/jdeq.1995.1122.

[26]

J. Moser, On the generalization of a theorem of A. Liapounoff, Comm. Pure Appl. Math., 11 (1958), 257-271.  doi: 10.1002/cpa.3160110208.

[27]

H. Rũssmann, Ũber das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nãhe einer Gleichgewichtslõsung, Math. Ann., 154 (1964), 285-300.  doi: 10.1007/BF01362565.

[28]

J. Vey, Sur certains systèmes dynamiques séparables, Amer. J. Math., 100 (1978), 591-614.  doi: 10.2307/2373841.

[29]

S. Vũ Ngoc, On semi-global invariants for focus-focus singularities, Topology, 42 (2003), 365-380.  doi: 10.1016/S0040-9383(01)00026-X.

[30]

X. Zhang, Global structure of quaternion polynomial differential equations, Comm. Math. Phys., 303 (2011), 301-316.  doi: 10.1007/s00220-011-1196-y.

[31]

X. Zhang, Liouvillian integrability of polynomial differential systems, Trans. Amer. Math. Soc., 368 (2016), 607-620.  doi: 10.1090/S0002-9947-2014-06387-3.

[32]

X. Zhang, Integrability of Dynamical Systems: Algebra and Analysis, Developments in Mathematics, Vol. 47, Springer, Singapore, 2017. doi: 10.1007/978-981-10-4226-3.

[33]

N. T. Zung, Convergence versus integrability in Birkhoff normal form, Ann. Math., 161 (2005) 141–156. doi: 10.4007/annals.2005.161.141.

[1]

Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371

[2]

Hans Koch. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 633-646. doi: 10.3934/dcds.2002.8.633

[3]

C. Chandre. Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 457-465. doi: 10.3934/dcdsb.2002.2.457

[4]

Denis G. Gaidashev. Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 63-102. doi: 10.3934/dcds.2005.13.63

[5]

Shengqing Hu, Bin Liu. Degenerate lower dimensional invariant tori in reversible system. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3735-3763. doi: 10.3934/dcds.2018162

[6]

Ugo Locatelli, Antonio Giorgilli. Invariant tori in the Sun--Jupiter--Saturn system. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 377-398. doi: 10.3934/dcdsb.2007.7.377

[7]

Qihuai Liu, Pedro J. Torres. Orbital dynamics on invariant sets of contact Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021297

[8]

Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645

[9]

Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 789-823. doi: 10.3934/dcdsb.2011.15.789

[10]

Yangyou Pan, Yuzhen Bai, Xiang Zhang. Dynamics of locally linearizable complex two dimensional cubic Hamiltonian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1761-1774. doi: 10.3934/dcdss.2019116

[11]

George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189

[12]

Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575

[13]

Slobodan N. Simić. Hölder forms and integrability of invariant distributions. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 669-685. doi: 10.3934/dcds.2009.25.669

[14]

Hongnian Huang. On the extension and smoothing of the Calabi flow on complex tori. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6153-6164. doi: 10.3934/dcds.2017265

[15]

Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069

[16]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

[17]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[18]

Rui L. Fernandes, Yuxuan Zhang. Local and global integrability of Lie brackets. Journal of Geometric Mechanics, 2021, 13 (3) : 355-384. doi: 10.3934/jgm.2021024

[19]

Božidar Jovanović, Vladimir Jovanović. Virtual billiards in pseudo–euclidean spaces: Discrete hamiltonian and contact integrability. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5163-5190. doi: 10.3934/dcds.2017224

[20]

Jaume Llibre, Yuzhou Tian. Meromorphic integrability of the Hamiltonian systems with homogeneous potentials of degree -4. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021228

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (293)
  • HTML views (192)
  • Cited by (0)

Other articles
by authors

[Back to Top]