This paper is concerned with the tempered pullback dynamics of the 2D Navier-Stokes equations with sublinear time delay operators subject to non-homogeneous boundary conditions in Lipschitz-like domains. By virtue of the estimates of background flow in Lipschitz-like domain and a new retarded Gronwall inequality, we establish the existence of pullback attractors in a general setting involving tempered universes.
Citation: |
[1] | J. M. Ball, Global attractors for damped semiliear wave equations, Disc. Cont. Dyn. Syst., 10 (2004), 31-52. doi: 10.3934/dcds.2004.10.31. |
[2] | V. Barbu and S. S. Sritharan, Navier-Stokes equations with hereditary viscosity, Z. Angew Math. Phys., 54 (2003), 449-461. doi: 10.1007/s00033-003-1087-y. |
[3] | R. M. Brown, P. A. Perry and Z. Shen, On the dimension of the attractor of the non-homogeneous Navier-Stokes equations in non-smooth domains, Inidian University Math. J., 49 (2000), 81-112. doi: 10.1512/iumj.2000.49.1603. |
[4] | T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Disc. Cont. Dyn. Syst. S, 8 (2015), 1079-1101. doi: 10.3934/dcdss.2015.8.1079. |
[5] | T. Caraballo and G. Kiss, Attractors for differential equations with multiple variable delays, Disc. Cont. Dyn. Syst., 33 (2013), 1365-1374. doi: 10.3934/dcds.2013.33.1365. |
[6] | T. Caraballo, J. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438. doi: 10.1006/jmaa.2000.7464. |
[7] | T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41. doi: 10.1016/j.jde.2003.09.008. |
[8] | T. Caraballo, P. Marín-Rubio and J. Valero, Attractors for differential equations with unbounded delays, J. Differential Equations, 239 (2007), 311-342. doi: 10.1016/j.jde.2007.05.015. |
[9] | T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 457 (2001), 2441-2453. doi: 10.1098/rspa.2001.0807. |
[10] | T. Caraballo and J. Real, Asymptotic behavior for two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 459 (2003), 3181-3194. doi: 10.1098/rspa.2003.1166. |
[11] | T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297. doi: 10.1016/j.jde.2004.04.012. |
[12] | A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York–Heidelberg–Dordrecht–London, 2013. doi: 10.1007/978-1-4614-4581-4. |
[13] | E. B. Fabes, C. E. Kenig and G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793. doi: 10.1215/S0012-7094-88-05734-1. |
[14] | C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754. |
[15] | J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357. doi: 10.1515/ans-2013-0205. |
[16] | J. García-Luengo, P. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays, Comm. Pure Appl. Anal., 14 (2015), 1603-1621. doi: 10.3934/cpaa.2015.14.1603. |
[17] | J. García-Luengo, P. Marín-Rubio and G. Planas, Attractors for a double time-delayed 2D-Navier-Stokes model, Disc. Cont. Dyn. Syst., 34 (2014), 4085-4105. doi: 10.3934/dcds.2014.34.4085. |
[18] | J. K. Hale, History of Delay Equations, Conference Proceedings of Delay Differential Equations and Applications, NATO Sci. Ser. II Math. Phys. Chem., 205, Springer, Dordrecht, 2006, 1–28. doi: 10.1007/1-4020-3647-7_1. |
[19] | J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4342-7. |
[20] | O. A. Ladyzhenskaya, The Mathematical Theory if Viscous Incompressible Flow, NGordon and Breach Science Publishers, New York-London 1963. |
[21] | O. Ladyzhenskaya, Attractors for Semigroup and Evolution Equations, Cambridge Uni. Press, Cambridge, 1991. Springer, second editon, 1991. doi: 10.1017/CBO9780511569418. |
[22] | J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. doi: 10.1007/BF02547354. |
[23] | D. Li, Q. Liu and X. Ju, Uniform decay estimates for solutions of a class of retarded integral inequalities, J. Differential Equations, 271 (2021), 1-38. doi: 10.1016/j.jde.2020.08.017. |
[24] | J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris 1969. |
[25] | P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799. doi: 10.1016/j.na.2006.09.035. |
[26] | P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delay in continuous and sub-linear operators, Disc. Cont. Dyn. Syst., 26 (2010), 989-1006. doi: 10.3934/dcds.2010.26.989. |
[27] | A. Miranville and X. Wang, Upper bounded on the dimension of the attractor for non-homogeneous Navier-Stokes equations, Disc. Cont. Dyn. Syst., 2 (1996), 95-110. doi: 10.3934/dcds.1996.2.95. |
[28] | A. Miranville and X. Wang, Attractors for non-autonomous non-homogenerous Navier-Stokes equations, Nonlinearity, 10 (1997), 1047-1061. doi: 10.1088/0951-7715/10/5/003. |
[29] | I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity, 11 (1998), 1369-1393. doi: 10.1088/0951-7715/11/5/012. |
[30] | J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0. |
[31] | J. C. Robinson, Attractors and finite-dimensional behaviour in the 2d Navier-Stokes equations, ISRN Math Anal., 203 (2013), 291823. doi: 10.1155/2013/291823. |
[32] | Z. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc., 123 (1995), 801-811. doi: 10.1090/S0002-9939-1995-1223521-9. |
[33] | T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force, Disc. Cont. Dyn. Syst., 12 (2005), 997-1018. doi: 10.3934/dcds.2005.12.997. |
[34] | R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. |
[35] | R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343. |
[36] | Y. Wang, X-G. Yang and X. Yan, Dynamics of 2D Navier-Stokes equations with Rayleigh's friction and distributed delay, Electronic J. Differential Equations, 2019 (2019), Paper No. 80, 18 pp. |
[37] | X.-G. Yang, B. Feng, T. Maier de Souza and T. Wang, Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equations in Lipschitz domain, Disc. Cont. Dyn. Syst. B, 24 (2019), 363-386. doi: 10.3934/dcdsb.2018084. |
[38] | X.-G. Yang, B. Guo, C. Guo and D. Li, The fractal dimension of pullback attractors for the 2D Navier-Stokes equations with delay, Math. Meth. Appl. Sci., 43 (2020), 9637–9653. doi: 10.1002/mma.6634. |
[39] | X.-G. Yang, Y. Qin, Y. Lu and T. F. Ma, Dynamics of 2D incompressible non-autonomous Navier-Stokes equations on Lipschitz-like domains, Appl. Math. & Optimization, 2019, 1–55. doi: 10.1007/s00245-019-09622-w. |
[40] | X.-G. Yang and S. Wang, Well-posedness for the 2D non-autonomous incompressible fluid flow in Lipschitz-like domain, J. Partial Differential Equations, 32 (2019), 77-92. doi: 10.4208/jpde.v32.n1.6. |