-
Previous Article
The relationship between word complexity and computational complexity in subshifts
- DCDS Home
- This Issue
-
Next Article
Study of fractional Poincaré inequalities on unbounded domains
Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains
1. | Department of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China |
2. | College of Mathematics and Science, Shanghai Normal University, Shanghai, China |
3. | Department of Mathematics, China University of Mining and Technology, Xuzhou, 221008, China |
4. | Laboratoire de Mathématiques et Applications, Université de Poitiers, UMR CNRS 7348, Site du Futuroscope - Téléport 2 |
5. | 11 Boulevard Marie et Pierre Curie, Bâtiment H3, TSA 61125, 86073 Poitiers Cedex 9, France |
This paper is concerned with the tempered pullback dynamics of the 2D Navier-Stokes equations with sublinear time delay operators subject to non-homogeneous boundary conditions in Lipschitz-like domains. By virtue of the estimates of background flow in Lipschitz-like domain and a new retarded Gronwall inequality, we establish the existence of pullback attractors in a general setting involving tempered universes.
References:
[1] |
J. M. Ball,
Global attractors for damped semiliear wave equations, Disc. Cont. Dyn. Syst., 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31. |
[2] |
V. Barbu and S. S. Sritharan,
Navier-Stokes equations with hereditary viscosity, Z. Angew Math. Phys., 54 (2003), 449-461.
doi: 10.1007/s00033-003-1087-y. |
[3] |
R. M. Brown, P. A. Perry and Z. Shen,
On the dimension of the attractor of the non-homogeneous Navier-Stokes equations in non-smooth domains, Inidian University Math. J., 49 (2000), 81-112.
doi: 10.1512/iumj.2000.49.1603. |
[4] |
T. Caraballo and X. Han,
A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Disc. Cont. Dyn. Syst. S, 8 (2015), 1079-1101.
doi: 10.3934/dcdss.2015.8.1079. |
[5] |
T. Caraballo and G. Kiss,
Attractors for differential equations with multiple variable delays, Disc. Cont. Dyn. Syst., 33 (2013), 1365-1374.
doi: 10.3934/dcds.2013.33.1365. |
[6] |
T. Caraballo, J. A. Langa and J. C. Robinson,
Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.
doi: 10.1006/jmaa.2000.7464. |
[7] |
T. Caraballo, P. Marín-Rubio and J. Valero,
Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.
doi: 10.1016/j.jde.2003.09.008. |
[8] |
T. Caraballo, P. Marín-Rubio and J. Valero,
Attractors for differential equations with unbounded delays, J. Differential Equations, 239 (2007), 311-342.
doi: 10.1016/j.jde.2007.05.015. |
[9] |
T. Caraballo and J. Real,
Navier-Stokes equations with delays, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 457 (2001), 2441-2453.
doi: 10.1098/rspa.2001.0807. |
[10] |
T. Caraballo and J. Real,
Asymptotic behavior for two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 459 (2003), 3181-3194.
doi: 10.1098/rspa.2003.1166. |
[11] |
T. Caraballo and J. Real,
Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.
doi: 10.1016/j.jde.2004.04.012. |
[12] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York–Heidelberg–Dordrecht–London, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[13] |
E. B. Fabes, C. E. Kenig and G. C. Verchota,
The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793.
doi: 10.1215/S0012-7094-88-05734-1. |
[14] |
C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511546754.![]() ![]() |
[15] |
J. García-Luengo, P. Marín-Rubio and J. Real,
Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357.
doi: 10.1515/ans-2013-0205. |
[16] |
J. García-Luengo, P. Marín-Rubio and J. Real,
Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays, Comm. Pure Appl. Anal., 14 (2015), 1603-1621.
doi: 10.3934/cpaa.2015.14.1603. |
[17] |
J. García-Luengo, P. Marín-Rubio and G. Planas,
Attractors for a double time-delayed 2D-Navier-Stokes model, Disc. Cont. Dyn. Syst., 34 (2014), 4085-4105.
doi: 10.3934/dcds.2014.34.4085. |
[18] |
J. K. Hale, History of Delay Equations, Conference Proceedings of Delay Differential Equations and Applications, NATO Sci. Ser. II Math. Phys. Chem., 205, Springer, Dordrecht, 2006, 1–28.
doi: 10.1007/1-4020-3647-7_1. |
[19] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[20] |
O. A. Ladyzhenskaya, The Mathematical Theory if Viscous Incompressible Flow, NGordon and Breach Science Publishers, New York-London 1963. |
[21] |
O. Ladyzhenskaya, Attractors for Semigroup and Evolution Equations, Cambridge Uni. Press, Cambridge, 1991. Springer, second editon, 1991.
doi: 10.1017/CBO9780511569418. |
[22] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[23] |
D. Li, Q. Liu and X. Ju,
Uniform decay estimates for solutions of a class of retarded integral inequalities, J. Differential Equations, 271 (2021), 1-38.
doi: 10.1016/j.jde.2020.08.017. |
[24] |
J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris 1969. |
[25] |
P. Marín-Rubio and J. Real,
Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799.
doi: 10.1016/j.na.2006.09.035. |
[26] |
P. Marín-Rubio and J. Real,
Pullback attractors for 2D Navier-Stokes equations with delay in continuous and sub-linear operators, Disc. Cont. Dyn. Syst., 26 (2010), 989-1006.
doi: 10.3934/dcds.2010.26.989. |
[27] |
A. Miranville and X. Wang,
Upper bounded on the dimension of the attractor for non-homogeneous Navier-Stokes equations, Disc. Cont. Dyn. Syst., 2 (1996), 95-110.
doi: 10.3934/dcds.1996.2.95. |
[28] |
A. Miranville and X. Wang,
Attractors for non-autonomous non-homogenerous Navier-Stokes equations, Nonlinearity, 10 (1997), 1047-1061.
doi: 10.1088/0951-7715/10/5/003. |
[29] |
I. Moise, R. Rosa and X. Wang,
Attractors for non-compact semigroups via energy equations, Nonlinearity, 11 (1998), 1369-1393.
doi: 10.1088/0951-7715/11/5/012. |
[30] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() |
[31] |
J. C. Robinson, Attractors and finite-dimensional behaviour in the 2d Navier-Stokes equations, ISRN Math Anal., 203 (2013), 291823.
doi: 10.1155/2013/291823. |
[32] |
Z. Shen,
A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc., 123 (1995), 801-811.
doi: 10.1090/S0002-9939-1995-1223521-9. |
[33] |
T. Taniguchi,
The exponential behavior of Navier-Stokes equations with time delay external force, Disc. Cont. Dyn. Syst., 12 (2005), 997-1018.
doi: 10.3934/dcds.2005.12.997. |
[34] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[35] |
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001.
doi: 10.1090/chel/343. |
[36] |
Y. Wang, X-G. Yang and X. Yan, Dynamics of 2D Navier-Stokes equations with Rayleigh's friction and distributed delay, Electronic J. Differential Equations, 2019 (2019), Paper No. 80, 18 pp. |
[37] |
X.-G. Yang, B. Feng, T. Maier de Souza and T. Wang,
Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equations in Lipschitz domain, Disc. Cont. Dyn. Syst. B, 24 (2019), 363-386.
doi: 10.3934/dcdsb.2018084. |
[38] |
X.-G. Yang, B. Guo, C. Guo and D. Li, The fractal dimension of pullback attractors for the 2D Navier-Stokes equations with delay, Math. Meth. Appl. Sci., 43 (2020), 9637–9653.
doi: 10.1002/mma.6634. |
[39] |
X.-G. Yang, Y. Qin, Y. Lu and T. F. Ma, Dynamics of 2D incompressible non-autonomous Navier-Stokes equations on Lipschitz-like domains, Appl. Math. & Optimization, 2019, 1–55.
doi: 10.1007/s00245-019-09622-w. |
[40] |
X.-G. Yang and S. Wang,
Well-posedness for the 2D non-autonomous incompressible fluid flow in Lipschitz-like domain, J. Partial Differential Equations, 32 (2019), 77-92.
doi: 10.4208/jpde.v32.n1.6. |
show all references
References:
[1] |
J. M. Ball,
Global attractors for damped semiliear wave equations, Disc. Cont. Dyn. Syst., 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31. |
[2] |
V. Barbu and S. S. Sritharan,
Navier-Stokes equations with hereditary viscosity, Z. Angew Math. Phys., 54 (2003), 449-461.
doi: 10.1007/s00033-003-1087-y. |
[3] |
R. M. Brown, P. A. Perry and Z. Shen,
On the dimension of the attractor of the non-homogeneous Navier-Stokes equations in non-smooth domains, Inidian University Math. J., 49 (2000), 81-112.
doi: 10.1512/iumj.2000.49.1603. |
[4] |
T. Caraballo and X. Han,
A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Disc. Cont. Dyn. Syst. S, 8 (2015), 1079-1101.
doi: 10.3934/dcdss.2015.8.1079. |
[5] |
T. Caraballo and G. Kiss,
Attractors for differential equations with multiple variable delays, Disc. Cont. Dyn. Syst., 33 (2013), 1365-1374.
doi: 10.3934/dcds.2013.33.1365. |
[6] |
T. Caraballo, J. A. Langa and J. C. Robinson,
Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.
doi: 10.1006/jmaa.2000.7464. |
[7] |
T. Caraballo, P. Marín-Rubio and J. Valero,
Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.
doi: 10.1016/j.jde.2003.09.008. |
[8] |
T. Caraballo, P. Marín-Rubio and J. Valero,
Attractors for differential equations with unbounded delays, J. Differential Equations, 239 (2007), 311-342.
doi: 10.1016/j.jde.2007.05.015. |
[9] |
T. Caraballo and J. Real,
Navier-Stokes equations with delays, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 457 (2001), 2441-2453.
doi: 10.1098/rspa.2001.0807. |
[10] |
T. Caraballo and J. Real,
Asymptotic behavior for two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 459 (2003), 3181-3194.
doi: 10.1098/rspa.2003.1166. |
[11] |
T. Caraballo and J. Real,
Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.
doi: 10.1016/j.jde.2004.04.012. |
[12] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York–Heidelberg–Dordrecht–London, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[13] |
E. B. Fabes, C. E. Kenig and G. C. Verchota,
The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793.
doi: 10.1215/S0012-7094-88-05734-1. |
[14] |
C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511546754.![]() ![]() |
[15] |
J. García-Luengo, P. Marín-Rubio and J. Real,
Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357.
doi: 10.1515/ans-2013-0205. |
[16] |
J. García-Luengo, P. Marín-Rubio and J. Real,
Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays, Comm. Pure Appl. Anal., 14 (2015), 1603-1621.
doi: 10.3934/cpaa.2015.14.1603. |
[17] |
J. García-Luengo, P. Marín-Rubio and G. Planas,
Attractors for a double time-delayed 2D-Navier-Stokes model, Disc. Cont. Dyn. Syst., 34 (2014), 4085-4105.
doi: 10.3934/dcds.2014.34.4085. |
[18] |
J. K. Hale, History of Delay Equations, Conference Proceedings of Delay Differential Equations and Applications, NATO Sci. Ser. II Math. Phys. Chem., 205, Springer, Dordrecht, 2006, 1–28.
doi: 10.1007/1-4020-3647-7_1. |
[19] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[20] |
O. A. Ladyzhenskaya, The Mathematical Theory if Viscous Incompressible Flow, NGordon and Breach Science Publishers, New York-London 1963. |
[21] |
O. Ladyzhenskaya, Attractors for Semigroup and Evolution Equations, Cambridge Uni. Press, Cambridge, 1991. Springer, second editon, 1991.
doi: 10.1017/CBO9780511569418. |
[22] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[23] |
D. Li, Q. Liu and X. Ju,
Uniform decay estimates for solutions of a class of retarded integral inequalities, J. Differential Equations, 271 (2021), 1-38.
doi: 10.1016/j.jde.2020.08.017. |
[24] |
J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris 1969. |
[25] |
P. Marín-Rubio and J. Real,
Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799.
doi: 10.1016/j.na.2006.09.035. |
[26] |
P. Marín-Rubio and J. Real,
Pullback attractors for 2D Navier-Stokes equations with delay in continuous and sub-linear operators, Disc. Cont. Dyn. Syst., 26 (2010), 989-1006.
doi: 10.3934/dcds.2010.26.989. |
[27] |
A. Miranville and X. Wang,
Upper bounded on the dimension of the attractor for non-homogeneous Navier-Stokes equations, Disc. Cont. Dyn. Syst., 2 (1996), 95-110.
doi: 10.3934/dcds.1996.2.95. |
[28] |
A. Miranville and X. Wang,
Attractors for non-autonomous non-homogenerous Navier-Stokes equations, Nonlinearity, 10 (1997), 1047-1061.
doi: 10.1088/0951-7715/10/5/003. |
[29] |
I. Moise, R. Rosa and X. Wang,
Attractors for non-compact semigroups via energy equations, Nonlinearity, 11 (1998), 1369-1393.
doi: 10.1088/0951-7715/11/5/012. |
[30] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001.
doi: 10.1007/978-94-010-0732-0.![]() ![]() |
[31] |
J. C. Robinson, Attractors and finite-dimensional behaviour in the 2d Navier-Stokes equations, ISRN Math Anal., 203 (2013), 291823.
doi: 10.1155/2013/291823. |
[32] |
Z. Shen,
A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc., 123 (1995), 801-811.
doi: 10.1090/S0002-9939-1995-1223521-9. |
[33] |
T. Taniguchi,
The exponential behavior of Navier-Stokes equations with time delay external force, Disc. Cont. Dyn. Syst., 12 (2005), 997-1018.
doi: 10.3934/dcds.2005.12.997. |
[34] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[35] |
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001.
doi: 10.1090/chel/343. |
[36] |
Y. Wang, X-G. Yang and X. Yan, Dynamics of 2D Navier-Stokes equations with Rayleigh's friction and distributed delay, Electronic J. Differential Equations, 2019 (2019), Paper No. 80, 18 pp. |
[37] |
X.-G. Yang, B. Feng, T. Maier de Souza and T. Wang,
Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equations in Lipschitz domain, Disc. Cont. Dyn. Syst. B, 24 (2019), 363-386.
doi: 10.3934/dcdsb.2018084. |
[38] |
X.-G. Yang, B. Guo, C. Guo and D. Li, The fractal dimension of pullback attractors for the 2D Navier-Stokes equations with delay, Math. Meth. Appl. Sci., 43 (2020), 9637–9653.
doi: 10.1002/mma.6634. |
[39] |
X.-G. Yang, Y. Qin, Y. Lu and T. F. Ma, Dynamics of 2D incompressible non-autonomous Navier-Stokes equations on Lipschitz-like domains, Appl. Math. & Optimization, 2019, 1–55.
doi: 10.1007/s00245-019-09622-w. |
[40] |
X.-G. Yang and S. Wang,
Well-posedness for the 2D non-autonomous incompressible fluid flow in Lipschitz-like domain, J. Partial Differential Equations, 32 (2019), 77-92.
doi: 10.4208/jpde.v32.n1.6. |
[1] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[2] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[3] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[4] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[5] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[6] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[7] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[8] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[9] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[10] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[11] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[12] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[13] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[14] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[15] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[16] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[17] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[18] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[19] |
Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116 |
[20] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]