doi: 10.3934/dcds.2020408

Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains

1. 

Department of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China

2. 

College of Mathematics and Science, Shanghai Normal University, Shanghai, China

3. 

Department of Mathematics, China University of Mining and Technology, Xuzhou, 221008, China

4. 

Laboratoire de Mathématiques et Applications, Université de Poitiers, UMR CNRS 7348, Site du Futuroscope - Téléport 2

5. 

11 Boulevard Marie et Pierre Curie, Bâtiment H3, TSA 61125, 86073 Poitiers Cedex 9, France

 

Received  June 2020 Published  December 2020

Fund Project: Research was partly supported by the Fund of Young Backbone Teacher in Henan Province (No. 2018GGJS039)

This paper is concerned with the tempered pullback dynamics of the 2D Navier-Stokes equations with sublinear time delay operators subject to non-homogeneous boundary conditions in Lipschitz-like domains. By virtue of the estimates of background flow in Lipschitz-like domain and a new retarded Gronwall inequality, we establish the existence of pullback attractors in a general setting involving tempered universes.

Citation: Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020408
References:
[1]

J. M. Ball, Global attractors for damped semiliear wave equations, Disc. Cont. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[2]

V. Barbu and S. S. Sritharan, Navier-Stokes equations with hereditary viscosity, Z. Angew Math. Phys., 54 (2003), 449-461.  doi: 10.1007/s00033-003-1087-y.  Google Scholar

[3]

R. M. BrownP. A. Perry and Z. Shen, On the dimension of the attractor of the non-homogeneous Navier-Stokes equations in non-smooth domains, Inidian University Math. J., 49 (2000), 81-112.  doi: 10.1512/iumj.2000.49.1603.  Google Scholar

[4]

T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Disc. Cont. Dyn. Syst. S, 8 (2015), 1079-1101.  doi: 10.3934/dcdss.2015.8.1079.  Google Scholar

[5]

T. Caraballo and G. Kiss, Attractors for differential equations with multiple variable delays, Disc. Cont. Dyn. Syst., 33 (2013), 1365-1374.  doi: 10.3934/dcds.2013.33.1365.  Google Scholar

[6]

T. CaraballoJ. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.  doi: 10.1006/jmaa.2000.7464.  Google Scholar

[7]

T. CaraballoP. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[8]

T. CaraballoP. Marín-Rubio and J. Valero, Attractors for differential equations with unbounded delays, J. Differential Equations, 239 (2007), 311-342.  doi: 10.1016/j.jde.2007.05.015.  Google Scholar

[9]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 457 (2001), 2441-2453.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[10]

T. Caraballo and J. Real, Asymptotic behavior for two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 459 (2003), 3181-3194.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[11]

T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[12]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York–Heidelberg–Dordrecht–London, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[13]

E. B. FabesC. E. Kenig and G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793.  doi: 10.1215/S0012-7094-88-05734-1.  Google Scholar

[14] C. FoiasO. ManleyR. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511546754.  Google Scholar
[15]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357.  doi: 10.1515/ans-2013-0205.  Google Scholar

[16]

J. García-LuengoP. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays, Comm. Pure Appl. Anal., 14 (2015), 1603-1621.  doi: 10.3934/cpaa.2015.14.1603.  Google Scholar

[17]

J. García-LuengoP. Marín-Rubio and G. Planas, Attractors for a double time-delayed 2D-Navier-Stokes model, Disc. Cont. Dyn. Syst., 34 (2014), 4085-4105.  doi: 10.3934/dcds.2014.34.4085.  Google Scholar

[18]

J. K. Hale, History of Delay Equations, Conference Proceedings of Delay Differential Equations and Applications, NATO Sci. Ser. II Math. Phys. Chem., 205, Springer, Dordrecht, 2006, 1–28. doi: 10.1007/1-4020-3647-7_1.  Google Scholar

[19]

J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[20]

O. A. Ladyzhenskaya, The Mathematical Theory if Viscous Incompressible Flow, NGordon and Breach Science Publishers, New York-London 1963.  Google Scholar

[21]

O. Ladyzhenskaya, Attractors for Semigroup and Evolution Equations, Cambridge Uni. Press, Cambridge, 1991. Springer, second editon, 1991. doi: 10.1017/CBO9780511569418.  Google Scholar

[22]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar

[23]

D. LiQ. Liu and X. Ju, Uniform decay estimates for solutions of a class of retarded integral inequalities, J. Differential Equations, 271 (2021), 1-38.  doi: 10.1016/j.jde.2020.08.017.  Google Scholar

[24]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris 1969.  Google Scholar

[25]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799.  doi: 10.1016/j.na.2006.09.035.  Google Scholar

[26]

P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delay in continuous and sub-linear operators, Disc. Cont. Dyn. Syst., 26 (2010), 989-1006.  doi: 10.3934/dcds.2010.26.989.  Google Scholar

[27]

A. Miranville and X. Wang, Upper bounded on the dimension of the attractor for non-homogeneous Navier-Stokes equations, Disc. Cont. Dyn. Syst., 2 (1996), 95-110.  doi: 10.3934/dcds.1996.2.95.  Google Scholar

[28]

A. Miranville and X. Wang, Attractors for non-autonomous non-homogenerous Navier-Stokes equations, Nonlinearity, 10 (1997), 1047-1061.  doi: 10.1088/0951-7715/10/5/003.  Google Scholar

[29]

I. MoiseR. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity, 11 (1998), 1369-1393.  doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[30] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[31]

J. C. Robinson, Attractors and finite-dimensional behaviour in the 2d Navier-Stokes equations, ISRN Math Anal., 203 (2013), 291823. doi: 10.1155/2013/291823.  Google Scholar

[32]

Z. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc., 123 (1995), 801-811.  doi: 10.1090/S0002-9939-1995-1223521-9.  Google Scholar

[33]

T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force, Disc. Cont. Dyn. Syst., 12 (2005), 997-1018.  doi: 10.3934/dcds.2005.12.997.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343.  Google Scholar

[36]

Y. Wang, X-G. Yang and X. Yan, Dynamics of 2D Navier-Stokes equations with Rayleigh's friction and distributed delay, Electronic J. Differential Equations, 2019 (2019), Paper No. 80, 18 pp.  Google Scholar

[37]

X.-G. YangB. FengT. Maier de Souza and T. Wang, Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equations in Lipschitz domain, Disc. Cont. Dyn. Syst. B, 24 (2019), 363-386.  doi: 10.3934/dcdsb.2018084.  Google Scholar

[38]

X.-G. Yang, B. Guo, C. Guo and D. Li, The fractal dimension of pullback attractors for the 2D Navier-Stokes equations with delay, Math. Meth. Appl. Sci., 43 (2020), 9637–9653. doi: 10.1002/mma.6634.  Google Scholar

[39]

X.-G. Yang, Y. Qin, Y. Lu and T. F. Ma, Dynamics of 2D incompressible non-autonomous Navier-Stokes equations on Lipschitz-like domains, Appl. Math. & Optimization, 2019, 1–55. doi: 10.1007/s00245-019-09622-w.  Google Scholar

[40]

X.-G. Yang and S. Wang, Well-posedness for the 2D non-autonomous incompressible fluid flow in Lipschitz-like domain, J. Partial Differential Equations, 32 (2019), 77-92.  doi: 10.4208/jpde.v32.n1.6.  Google Scholar

show all references

References:
[1]

J. M. Ball, Global attractors for damped semiliear wave equations, Disc. Cont. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[2]

V. Barbu and S. S. Sritharan, Navier-Stokes equations with hereditary viscosity, Z. Angew Math. Phys., 54 (2003), 449-461.  doi: 10.1007/s00033-003-1087-y.  Google Scholar

[3]

R. M. BrownP. A. Perry and Z. Shen, On the dimension of the attractor of the non-homogeneous Navier-Stokes equations in non-smooth domains, Inidian University Math. J., 49 (2000), 81-112.  doi: 10.1512/iumj.2000.49.1603.  Google Scholar

[4]

T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Disc. Cont. Dyn. Syst. S, 8 (2015), 1079-1101.  doi: 10.3934/dcdss.2015.8.1079.  Google Scholar

[5]

T. Caraballo and G. Kiss, Attractors for differential equations with multiple variable delays, Disc. Cont. Dyn. Syst., 33 (2013), 1365-1374.  doi: 10.3934/dcds.2013.33.1365.  Google Scholar

[6]

T. CaraballoJ. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.  doi: 10.1006/jmaa.2000.7464.  Google Scholar

[7]

T. CaraballoP. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[8]

T. CaraballoP. Marín-Rubio and J. Valero, Attractors for differential equations with unbounded delays, J. Differential Equations, 239 (2007), 311-342.  doi: 10.1016/j.jde.2007.05.015.  Google Scholar

[9]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 457 (2001), 2441-2453.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[10]

T. Caraballo and J. Real, Asymptotic behavior for two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 459 (2003), 3181-3194.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[11]

T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[12]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York–Heidelberg–Dordrecht–London, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[13]

E. B. FabesC. E. Kenig and G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793.  doi: 10.1215/S0012-7094-88-05734-1.  Google Scholar

[14] C. FoiasO. ManleyR. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511546754.  Google Scholar
[15]

J. García-LuengoP. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357.  doi: 10.1515/ans-2013-0205.  Google Scholar

[16]

J. García-LuengoP. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays, Comm. Pure Appl. Anal., 14 (2015), 1603-1621.  doi: 10.3934/cpaa.2015.14.1603.  Google Scholar

[17]

J. García-LuengoP. Marín-Rubio and G. Planas, Attractors for a double time-delayed 2D-Navier-Stokes model, Disc. Cont. Dyn. Syst., 34 (2014), 4085-4105.  doi: 10.3934/dcds.2014.34.4085.  Google Scholar

[18]

J. K. Hale, History of Delay Equations, Conference Proceedings of Delay Differential Equations and Applications, NATO Sci. Ser. II Math. Phys. Chem., 205, Springer, Dordrecht, 2006, 1–28. doi: 10.1007/1-4020-3647-7_1.  Google Scholar

[19]

J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[20]

O. A. Ladyzhenskaya, The Mathematical Theory if Viscous Incompressible Flow, NGordon and Breach Science Publishers, New York-London 1963.  Google Scholar

[21]

O. Ladyzhenskaya, Attractors for Semigroup and Evolution Equations, Cambridge Uni. Press, Cambridge, 1991. Springer, second editon, 1991. doi: 10.1017/CBO9780511569418.  Google Scholar

[22]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar

[23]

D. LiQ. Liu and X. Ju, Uniform decay estimates for solutions of a class of retarded integral inequalities, J. Differential Equations, 271 (2021), 1-38.  doi: 10.1016/j.jde.2020.08.017.  Google Scholar

[24]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris 1969.  Google Scholar

[25]

P. Marín-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal., 67 (2007), 2784-2799.  doi: 10.1016/j.na.2006.09.035.  Google Scholar

[26]

P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delay in continuous and sub-linear operators, Disc. Cont. Dyn. Syst., 26 (2010), 989-1006.  doi: 10.3934/dcds.2010.26.989.  Google Scholar

[27]

A. Miranville and X. Wang, Upper bounded on the dimension of the attractor for non-homogeneous Navier-Stokes equations, Disc. Cont. Dyn. Syst., 2 (1996), 95-110.  doi: 10.3934/dcds.1996.2.95.  Google Scholar

[28]

A. Miranville and X. Wang, Attractors for non-autonomous non-homogenerous Navier-Stokes equations, Nonlinearity, 10 (1997), 1047-1061.  doi: 10.1088/0951-7715/10/5/003.  Google Scholar

[29]

I. MoiseR. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity, 11 (1998), 1369-1393.  doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[30] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001.  doi: 10.1007/978-94-010-0732-0.  Google Scholar
[31]

J. C. Robinson, Attractors and finite-dimensional behaviour in the 2d Navier-Stokes equations, ISRN Math Anal., 203 (2013), 291823. doi: 10.1155/2013/291823.  Google Scholar

[32]

Z. Shen, A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc., 123 (1995), 801-811.  doi: 10.1090/S0002-9939-1995-1223521-9.  Google Scholar

[33]

T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force, Disc. Cont. Dyn. Syst., 12 (2005), 997-1018.  doi: 10.3934/dcds.2005.12.997.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343.  Google Scholar

[36]

Y. Wang, X-G. Yang and X. Yan, Dynamics of 2D Navier-Stokes equations with Rayleigh's friction and distributed delay, Electronic J. Differential Equations, 2019 (2019), Paper No. 80, 18 pp.  Google Scholar

[37]

X.-G. YangB. FengT. Maier de Souza and T. Wang, Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equations in Lipschitz domain, Disc. Cont. Dyn. Syst. B, 24 (2019), 363-386.  doi: 10.3934/dcdsb.2018084.  Google Scholar

[38]

X.-G. Yang, B. Guo, C. Guo and D. Li, The fractal dimension of pullback attractors for the 2D Navier-Stokes equations with delay, Math. Meth. Appl. Sci., 43 (2020), 9637–9653. doi: 10.1002/mma.6634.  Google Scholar

[39]

X.-G. Yang, Y. Qin, Y. Lu and T. F. Ma, Dynamics of 2D incompressible non-autonomous Navier-Stokes equations on Lipschitz-like domains, Appl. Math. & Optimization, 2019, 1–55. doi: 10.1007/s00245-019-09622-w.  Google Scholar

[40]

X.-G. Yang and S. Wang, Well-posedness for the 2D non-autonomous incompressible fluid flow in Lipschitz-like domain, J. Partial Differential Equations, 32 (2019), 77-92.  doi: 10.4208/jpde.v32.n1.6.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[6]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[7]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[8]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[9]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[10]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[11]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[12]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[13]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[14]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[15]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[16]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[17]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[18]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[19]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[20]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

2019 Impact Factor: 1.338

Article outline

[Back to Top]