Article Contents
Article Contents

# Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance

This work has been supported by the Croatian Science Foundation under Grant agreement No. UIP-05-2017-7249 (MANDphy) and in part by the bilaterial project No. HR 04/2018 between OeAD and MZO
• In this paper we construct a unique global in time weak nonnegative solution to the corrected Derrida-Lebowitz-Speer-Spohn equation, which statistically describes the interface fluctuations between two phases in a certain spin system. The construction of the weak solution is based on the dissipation of a Lyapunov functional which equals to the square of the Hellinger distance between the solution and the constant steady state. Furthermore, it is shown that the weak solution converges at an exponential rate to the constant steady state in the Hellinger distance and thus also in the $L^1$-norm. Numerical scheme which preserves the variational structure of the equation is devised and its convergence in terms of a discrete Hellinger distance is demonstrated.

Mathematics Subject Classification: Primary: 35B45, 35K30, 65M06, 65M12; Secondary: 35Q99, 65M15.

 Citation:

• Figure 1.  Numerical evolution of the corrected DLSS equation for unit mass initial datum $u_0$ at different time moments: $t_1 = 5\cdot10^{-6}$, $t_2 = 4\cdot10^{-5}$, $t_3 = 2\cdot10^{-4}$, and $t_4 = 1.5\cdot10^{-3}$

Figure 2.  Errors with respect to time and space discretization parameters. Dashed lines indicate theoretical convergence rates of the numerical scheme

Table 1.  Numerical convergence rates: $\kappa_t$ in time (left) and $\kappa_s$ in space (right) calculated according to (67)

•  [1] L. Ambrosio, N. Gigli and G. Savare, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser Basel, 2008. [2] H. Bae and R. Granero-Belinchón, Global existence and exponential decay to equilibrium for DLSS-Type equations, J. Dyn. Diff. Equat., (2020). doi: 10.1007/s10884-020-09852-5. [3] J. Becker and G. Grün, The thin-film equation: Recent advances and some new perspectives, J. Phys.: Condens. Matter, 17 (2005), 291-307.  doi: 10.1088/0953-8984/17/9/002. [4] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Diff. Eqs., 83 (1990), 179-206.  doi: 10.1016/0022-0396(90)90074-Y. [5] A. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices Amer. Math. Soc., 45 (1998), 689-697. [6] P. M. Bleher, J. L. Lebowitz and E. R. Speer, Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations, Commun. Pure Appl. Math., 47 (1994), 923–942. doi: 10.1002/cpa.3160470702. [7] C. Bordenave, P. Germain and T. Trogdon, An extension of the Derrida–Lebowitz–Speer–Spohn equation, J. Phys. A: Math. Theor., 48 (2015), 485205. doi: 10.1088/1751-8113/48/48/485205. [8] M. Bukal, E. Emmrich and A. Jüngel, Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation, Numerische Mathematik, 127 (2014), 365-396.  doi: 10.1007/s00211-013-0588-7. [9] M. Bukal, A. Jüngel and D. Matthes, A multidimensional nonlinear sixth-order quantum diffusion equation, Annales de l'IHP Analyse Non Linéaire, 30 (2013), 337–365. doi: 10.1016/j.anihpc.2012.08.003. [10] M. Burger, L. He and C.-B. Schönlieb, Cahn-Hilliard inpainting and a generalization for grayvalue images, SIAM Journal on Imaging Sciences, 2 (2009), 1129-1167.  doi: 10.1137/080728548. [11] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, The Journal of Chemical Physics, 28 (1958), 258-267.  doi: 10.1063/1.1744102. [12] J. A. Carrillo, J. Dolbeault, I. Gentil and A. Jüngel, Entropy-Energy inequalities and improved convergence rates for nonlinear parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1027-1050.  doi: 10.3934/dcdsb.2006.6.1027. [13] J. A. Carrillo, A. Jüngel and S. Tang, Positive entropic schemes for a nonlinear fourth-order equation, Discrete Contin. Dyn. Syst. B, 3 (2003), 1-20.  doi: 10.3934/dcdsb.2003.3.1. [14] J. A. Carrillo and G. Toscani, Long-Time Asymptotics for Strong Solutions of the Thin Film Equation, Commun. Math. Phys., 225 (2002), 551-571.  doi: 10.1007/s002200100591. [15] X. Chen, A. Jüngel and J.-G. Liu, A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.  doi: 10.1007/s10440-013-9858-8. [16] P. Constantin, T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, M. J. Shelley and S. -M. Zhou, Droplet breakup in a model of the Hele-Shaw cell, Phys. Rev. E, 47 (1993), 4169-4181.  doi: 10.1103/PhysRevE.47.4169. [17] R. Dal Passo, H. Garcke and G. Grün, On a fourth order degenerate parabolic equation: Global entropy estimates and qualitative behaviour of solutions, SIAM J. Math. Anal., 29 (1998), 321-342.  doi: 10.1137/S0036141096306170. [18] P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models, J. Stat. Phys., 118 (2005), 625-667.  doi: 10.1007/s10955-004-8823-3. [19] B. Derrida, J. L. Lebowitz, E. R. Speer and H. Spohn, Dynamics of an anchored Toom interface, J. Phys. A: Math. Gen., 24 (1991), 4805-4834.  doi: 10.1088/0305-4470/24/20/015. [20] B. Düring, D. Matthes and J. P. Milišić, A gradient flow scheme for nonlinear fourth order equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 935-959.  doi: 10.3934/dcdsb.2010.14.935. [21] D. Furihata and T. Matsuo, Discrete Variational Derivative Method, Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton, FL, 2011. [22] J. Fischer, Uniqueness of solutions of the Derrida-Lebowitz-Speer-Spohn equation and quantum drift-diffusion models, Comm. Partial Differential Equations, 38 (2013), 2004-2047.  doi: 10.1080/03605302.2013.823548. [23] L. Giacomelli and F. Otto, Variational formulation for the lubrication approximation of the Hele-Shaw flow, Calc. Var. PDEs, 13 (2001), 377-403.  doi: 10.1007/s005260000077. [24] U. Gianazza, G. Savaré and G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal., 194 (2009), 133-220.  doi: 10.1007/s00205-008-0186-5. [25] A. E. Hosoi and L. Mahadevan, Peeling, healing and bursting in a lubricated elastic sheet, Phys. Rev. Lett., 93 (2004), 137802. doi: 10.1103/PhysRevLett.93.137802. [26] C. Josserand, Y. Pomeau and S. Rica, Self-similar singularities in the kinetics of condensation, J. of Low Temp. Physics, 145 (2006), 231-265.  doi: 10.1007/s10909-006-9232-6. [27] A. Jüngel and D. Matthes, An algorithmic construction of entropies in higher-order nonlinear PDEs, Nonlinearity, 19 (2006), 633-659.  doi: 10.1088/0951-7715/19/3/006. [28] A. Jüngel and D. Matthes, The Derrida-Lebowitz-Speer-Spohn equation: existence, non-uniqueness, and decay rates of the solutions, SIAM J. Math. Anal., 39 (2008), 1996-2015.  doi: 10.1137/060676878. [29] A. Jüngel and J. -P. Milišić, A sixth-order nonlinear parabolic equation for quantum systems, SIAM J. Math. Anal., 41 (2009), 1472-1490.  doi: 10.1137/080739021. [30] A. Jüngel and R. Pinnau, Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems, SIAM J. Math. Anal., 32 (2000), 760-777.  doi: 10.1137/S0036141099360269. [31] A. Jüngel and R. Pinnau, A positivity preserving numerical scheme for a nonlinear fourth-order parabolic equation, SIAM J. Num. Anal., 39 (2001), 385-406.  doi: 10.1137/S0036142900369362. [32] A. Jüngel and I. Violet, First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation, Discrete Cont. Dyn. Sys. B, 8 (2007), 861–877. doi: 10.3934/dcdsb.2007.8.861. [33] J. R. King, The isolation oxidation of silicon: The reaction-controlled case, SIAM J. Appl. Math., 49 (1989), 1064-1080.  doi: 10.1137/0149064. [34] J. R. Lister, G. G. Peng and J. A. Neufeld, Spread of a viscous fluid beneath an elastic sheet, Phys. Rev. Lett., 111 (2013). [35] J. Maas and D. Matthes, Long-time behavior of a finite volume discretization for a fourth order diffusion equation, Nonlinearity, 29 (2016), 1992-2023.  doi: 10.1088/0951-7715/29/7/1992. [36] D. Matthes and H. Osberger, A Convergent Lagrangian Discretization for a Nonlinear Fourth-Order Equation, Foundations of Computational Mathematics, 17 (2017), 73-126.  doi: 10.1007/s10208-015-9284-6. [37] T. G. Myers, Thin films with high surface tension, SIAM Rev., 40 (1998), 441-462.  doi: 10.1137/S003614459529284X. [38] A. Novick-Cohen and A. Shishkov, The thin film equation with backwards second order diffusion, Interfaces and Free Boundaries, 12 (2010), 463-496.  doi: 10.4171/IFB/242. [39] A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980.  doi: 10.1103/RevModPhys.69.931. [40] A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of California Press, Berkeley, CA, 1951. [41] T. P. Witelski, A. J. Bernoff and A. L. Bertozzi, Blowup and dissipation in a critical case unstable thin film equation, Euro. Jnl. of Applied Mathematics, 15 (2004), 223-256.  doi: 10.1017/S0956792504005418.

Figures(2)

Tables(1)