July  2021, 41(7): 3415-3445. doi: 10.3934/dcds.2021002

A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains

Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea

* Corresponding author

Received  February 2020 Revised  November 2020 Published  July 2021 Early access  January 2021

Fund Project: The authors were supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2019R1A5A1028324)

We introduce a weighted
$ L_{p} $
-theory (
$ p>1 $
) for the time-fractional diffusion-wave equation of the type
$ \begin{equation*} \partial_{t}^{\alpha}u(t,x) = a^{ij}(t,x)u_{x^{i}x^{j}}(t,x)+f(t,x), \quad t>0, x\in \Omega, \end{equation*} $
where
$ \alpha\in (0,2) $
,
$ \partial_{t}^{\alpha} $
denotes the Caputo fractional derivative of order
$ \alpha $
, and
$ \Omega $
is a
$ C^1 $
domain in
$ \mathbb{R}^d $
. We prove existence and uniqueness results in Sobolev spaces with weights which allow derivatives of solutions to blow up near the boundary. The order of derivatives of solutions can be any real number, and in particular it can be fractional or negative.
Citation: Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002
References:
[1]

D. Beleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, 2012. doi: 10.1142/9789814355216.

[2]

H. Dong and D. Kim, $L_p$-estimates for time fractional parabolic equations in divergence form with measurable coefficients, J. Funct. Anal., 278 (2020), 108338.  doi: 10.1016/j.jfa.2019.108338.

[3]

H. Dong and D. Kim, $L_p$-estimates for time fractional parabolic equations with coefficients measurable in time, Adv. Math., 345 (2019), 289-345.  doi: 10.1016/j.aim.2019.01.016.

[4]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015.

[5]

B.-S. HanK.-H. Kim and D. Park, Weighed $L_{q}(L_{p})$-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives, J. Differ. Equ., 269 (2020), 3515-3550.  doi: 10.1016/j.jde.2020.03.005.

[6]

D. Kim, K.-H. Kim and K. Lee, Parabolic systems with measurable coefficients in weighted Sobolev spaces, arXiv: 1809.01325, (2018).

[7]

I. KimK.-H. Kim and S. Lim, A Sobolev space theory for stochastic partial differential equations with time-fractional derivatives, Ann. Probab., 47 (2019), 2087-2139.  doi: 10.1214/18-AOP1303.

[8]

I. KimK.-H. Kim and S. Lim, An $L_q(L_p)$-theory for the time fractional evolution equations with variable coefficients, Adv. Math., 306 (2017), 123-176.  doi: 10.1016/j.aim.2016.08.046.

[9]

K.-H. Kim, On $L_{p}$-theory of stochastic partial differential equations of divergence form in $C^{1}$ domains, Probab. Theory. Rel., 130 (2004), 473-492.  doi: 10.1007/s00440-004-0368-5.

[10]

K.-H. Kim, On stochastic partial differential equations with variable coefficients in $C^1$ domains, Stoch. Proc. Appl., 112 (2004), 261-283.  doi: 10.1016/j.spa.2004.02.006.

[11]

K.-H. Kim and N. V. Krylov, On the Sobolev space theory of parabolic and elliptic equations in $C^1$ domains, SIAM J. Math. Anal., 36 (2004), 618-642.  doi: 10.1137/S0036141003421145.

[12]

K.-H. Kim and N. V. Krylov, On SPDEs with variable coefficients in one space dimension, Potential Anal., 21 (2004), 209-239.  doi: 10.1023/B:POTA.0000033334.06990.9d.

[13]

K.-H. Kim and S. Lim, Asymptotic behaviors of fundamental solution and its derivatives related to space-time fractional differential equations, J. Korean Math. Soc., 53 (2016), 929-967.  doi: 10.4134/JKMS.j150343.

[14]

N. V. Krylov and S. V. Lototsky, A Sobolev space theory of SPDEs with constant coefficients on a half line, SIAM J. Math. Anal., 30 (1999), 298-325.  doi: 10.1137/S0036141097326908.

[15]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Amer. Math. Soc., Providence, 2008. doi: 10.1090/gsm/096.

[16]

N. V. Krylov, Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space, Comm. Partial Differential Equations, 24 (1999), 1611-1653.  doi: 10.1080/03605309908821478.

[17]

G. M. Lieberman, Regularized distance and its applications, Pacific J. Math., 117 (1985), 329-352.  doi: 10.2140/pjm.1985.117.329.

[18]

S. V. Lototsky, Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations, Methods. Appl. Anal., 7 (2000), 195-204.  doi: 10.4310/MAA.2000.v7.n1.a9.

[19]

F. Mainardi, Fractional diffusive waves in viscoelastic solids, Nonlinear waves in solids, 137 (1995), 93-97. 

[20]

F. Mainardi and P. Paradisi, Fractional diffusive waves, J. Comput. Acoust., 9 (2001), 1417-1436.  doi: 10.1142/S0218396X01000826.

[21]

R. MetzlerE. Barkai and J. Kalfter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82 (1999), 35-63. 

[22]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.

[23]

I. Podludni, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 1999.

[24]

H. Richard, Fractional Calculus: An Introduction for Physicists, , World Scientific, 2014.

[25]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, , CRC Press, 1993.

[26]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.

[27]

R. Zacher, Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103.  doi: 10.1007/s00028-004-0161-z.

[28]

R. Zacher, Global strong solvability of a quasilinear subdiffusion problem, J. Evol. Equ., 12 (2012), 813-831.  doi: 10.1007/s00028-012-0156-0.

show all references

References:
[1]

D. Beleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, 2012. doi: 10.1142/9789814355216.

[2]

H. Dong and D. Kim, $L_p$-estimates for time fractional parabolic equations in divergence form with measurable coefficients, J. Funct. Anal., 278 (2020), 108338.  doi: 10.1016/j.jfa.2019.108338.

[3]

H. Dong and D. Kim, $L_p$-estimates for time fractional parabolic equations with coefficients measurable in time, Adv. Math., 345 (2019), 289-345.  doi: 10.1016/j.aim.2019.01.016.

[4]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015.

[5]

B.-S. HanK.-H. Kim and D. Park, Weighed $L_{q}(L_{p})$-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives, J. Differ. Equ., 269 (2020), 3515-3550.  doi: 10.1016/j.jde.2020.03.005.

[6]

D. Kim, K.-H. Kim and K. Lee, Parabolic systems with measurable coefficients in weighted Sobolev spaces, arXiv: 1809.01325, (2018).

[7]

I. KimK.-H. Kim and S. Lim, A Sobolev space theory for stochastic partial differential equations with time-fractional derivatives, Ann. Probab., 47 (2019), 2087-2139.  doi: 10.1214/18-AOP1303.

[8]

I. KimK.-H. Kim and S. Lim, An $L_q(L_p)$-theory for the time fractional evolution equations with variable coefficients, Adv. Math., 306 (2017), 123-176.  doi: 10.1016/j.aim.2016.08.046.

[9]

K.-H. Kim, On $L_{p}$-theory of stochastic partial differential equations of divergence form in $C^{1}$ domains, Probab. Theory. Rel., 130 (2004), 473-492.  doi: 10.1007/s00440-004-0368-5.

[10]

K.-H. Kim, On stochastic partial differential equations with variable coefficients in $C^1$ domains, Stoch. Proc. Appl., 112 (2004), 261-283.  doi: 10.1016/j.spa.2004.02.006.

[11]

K.-H. Kim and N. V. Krylov, On the Sobolev space theory of parabolic and elliptic equations in $C^1$ domains, SIAM J. Math. Anal., 36 (2004), 618-642.  doi: 10.1137/S0036141003421145.

[12]

K.-H. Kim and N. V. Krylov, On SPDEs with variable coefficients in one space dimension, Potential Anal., 21 (2004), 209-239.  doi: 10.1023/B:POTA.0000033334.06990.9d.

[13]

K.-H. Kim and S. Lim, Asymptotic behaviors of fundamental solution and its derivatives related to space-time fractional differential equations, J. Korean Math. Soc., 53 (2016), 929-967.  doi: 10.4134/JKMS.j150343.

[14]

N. V. Krylov and S. V. Lototsky, A Sobolev space theory of SPDEs with constant coefficients on a half line, SIAM J. Math. Anal., 30 (1999), 298-325.  doi: 10.1137/S0036141097326908.

[15]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Amer. Math. Soc., Providence, 2008. doi: 10.1090/gsm/096.

[16]

N. V. Krylov, Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space, Comm. Partial Differential Equations, 24 (1999), 1611-1653.  doi: 10.1080/03605309908821478.

[17]

G. M. Lieberman, Regularized distance and its applications, Pacific J. Math., 117 (1985), 329-352.  doi: 10.2140/pjm.1985.117.329.

[18]

S. V. Lototsky, Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations, Methods. Appl. Anal., 7 (2000), 195-204.  doi: 10.4310/MAA.2000.v7.n1.a9.

[19]

F. Mainardi, Fractional diffusive waves in viscoelastic solids, Nonlinear waves in solids, 137 (1995), 93-97. 

[20]

F. Mainardi and P. Paradisi, Fractional diffusive waves, J. Comput. Acoust., 9 (2001), 1417-1436.  doi: 10.1142/S0218396X01000826.

[21]

R. MetzlerE. Barkai and J. Kalfter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82 (1999), 35-63. 

[22]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.

[23]

I. Podludni, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 1999.

[24]

H. Richard, Fractional Calculus: An Introduction for Physicists, , World Scientific, 2014.

[25]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, , CRC Press, 1993.

[26]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.

[27]

R. Zacher, Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103.  doi: 10.1007/s00028-004-0161-z.

[28]

R. Zacher, Global strong solvability of a quasilinear subdiffusion problem, J. Evol. Equ., 12 (2012), 813-831.  doi: 10.1007/s00028-012-0156-0.

[1]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The numerical solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026

[2]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[3]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[4]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[5]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[6]

Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022, 11 (6) : 2099-2127. doi: 10.3934/eect.2022014

[7]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[8]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[9]

Teo Kukuljan. Higher order parabolic boundary Harnack inequality in C1 and Ck, α domains. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2667-2698. doi: 10.3934/dcds.2021207

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[11]

Dinh Nguyen Duy Hai. Identifying a space-dependent source term in distributed order time-fractional diffusion equations. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022025

[12]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[13]

Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 153-179. doi: 10.3934/eect.2020001

[14]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[15]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[16]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[17]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013

[18]

Xinchi Huang, Atsushi Kawamoto. Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates. Inverse Problems and Imaging, 2022, 16 (1) : 39-67. doi: 10.3934/ipi.2021040

[19]

Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027

[20]

Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial and Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (365)
  • HTML views (160)
  • Cited by (0)

Other articles
by authors

[Back to Top]