-
Previous Article
Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential
- DCDS Home
- This Issue
-
Next Article
Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems
A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains
Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea |
$ L_{p} $ |
$ p>1 $ |
$ \begin{equation*} \partial_{t}^{\alpha}u(t,x) = a^{ij}(t,x)u_{x^{i}x^{j}}(t,x)+f(t,x), \quad t>0, x\in \Omega, \end{equation*} $ |
$ \alpha\in (0,2) $ |
$ \partial_{t}^{\alpha} $ |
$ \alpha $ |
$ \Omega $ |
$ C^1 $ |
$ \mathbb{R}^d $ |
References:
[1] |
D. Beleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, 2012.
doi: 10.1142/9789814355216. |
[2] |
H. Dong and D. Kim,
$L_p$-estimates for time fractional parabolic equations in divergence form with measurable coefficients, J. Funct. Anal., 278 (2020), 108338.
doi: 10.1016/j.jfa.2019.108338. |
[3] |
H. Dong and D. Kim,
$L_p$-estimates for time fractional parabolic equations with coefficients measurable in time, Adv. Math., 345 (2019), 289-345.
doi: 10.1016/j.aim.2019.01.016. |
[4] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015. |
[5] |
B.-S. Han, K.-H. Kim and D. Park,
Weighed $L_{q}(L_{p})$-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives, J. Differ. Equ., 269 (2020), 3515-3550.
doi: 10.1016/j.jde.2020.03.005. |
[6] |
D. Kim, K.-H. Kim and K. Lee, Parabolic systems with measurable coefficients in weighted Sobolev spaces, arXiv: 1809.01325, (2018). Google Scholar |
[7] |
I. Kim, K.-H. Kim and S. Lim,
A Sobolev space theory for stochastic partial differential equations with time-fractional derivatives, Ann. Probab., 47 (2019), 2087-2139.
doi: 10.1214/18-AOP1303. |
[8] |
I. Kim, K.-H. Kim and S. Lim,
An $L_q(L_p)$-theory for the time fractional evolution equations with variable coefficients, Adv. Math., 306 (2017), 123-176.
doi: 10.1016/j.aim.2016.08.046. |
[9] |
K.-H. Kim,
On $L_{p}$-theory of stochastic partial differential equations of divergence form in $C^{1}$ domains, Probab. Theory. Rel., 130 (2004), 473-492.
doi: 10.1007/s00440-004-0368-5. |
[10] |
K.-H. Kim,
On stochastic partial differential equations with variable coefficients in $C^1$ domains, Stoch. Proc. Appl., 112 (2004), 261-283.
doi: 10.1016/j.spa.2004.02.006. |
[11] |
K.-H. Kim and N. V. Krylov,
On the Sobolev space theory of parabolic and elliptic equations in $C^1$ domains, SIAM J. Math. Anal., 36 (2004), 618-642.
doi: 10.1137/S0036141003421145. |
[12] |
K.-H. Kim and N. V. Krylov,
On SPDEs with variable coefficients in one space dimension, Potential Anal., 21 (2004), 209-239.
doi: 10.1023/B:POTA.0000033334.06990.9d. |
[13] |
K.-H. Kim and S. Lim,
Asymptotic behaviors of fundamental solution and its derivatives related to space-time fractional differential equations, J. Korean Math. Soc., 53 (2016), 929-967.
doi: 10.4134/JKMS.j150343. |
[14] |
N. V. Krylov and S. V. Lototsky,
A Sobolev space theory of SPDEs with constant coefficients on a half line, SIAM J. Math. Anal., 30 (1999), 298-325.
doi: 10.1137/S0036141097326908. |
[15] |
N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Amer. Math. Soc., Providence, 2008.
doi: 10.1090/gsm/096. |
[16] |
N. V. Krylov,
Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space, Comm. Partial Differential Equations, 24 (1999), 1611-1653.
doi: 10.1080/03605309908821478. |
[17] |
G. M. Lieberman,
Regularized distance and its applications, Pacific J. Math., 117 (1985), 329-352.
doi: 10.2140/pjm.1985.117.329. |
[18] |
S. V. Lototsky,
Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations, Methods. Appl. Anal., 7 (2000), 195-204.
doi: 10.4310/MAA.2000.v7.n1.a9. |
[19] |
F. Mainardi, Fractional diffusive waves in viscoelastic solids, Nonlinear waves in solids, 137 (1995), 93-97. Google Scholar |
[20] |
F. Mainardi and P. Paradisi,
Fractional diffusive waves, J. Comput. Acoust., 9 (2001), 1417-1436.
doi: 10.1142/S0218396X01000826. |
[21] |
R. Metzler, E. Barkai and J. Kalfter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82 (1999), 35-63. Google Scholar |
[22] |
R. Metzler and J. Klafter,
The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3. |
[23] |
I. Podludni, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 1999. |
[24] |
H. Richard, Fractional Calculus: An Introduction for Physicists, , World Scientific, 2014. Google Scholar |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, , CRC Press, 1993. |
[26] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[27] |
R. Zacher,
Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103.
doi: 10.1007/s00028-004-0161-z. |
[28] |
R. Zacher,
Global strong solvability of a quasilinear subdiffusion problem, J. Evol. Equ., 12 (2012), 813-831.
doi: 10.1007/s00028-012-0156-0. |
show all references
References:
[1] |
D. Beleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, 2012.
doi: 10.1142/9789814355216. |
[2] |
H. Dong and D. Kim,
$L_p$-estimates for time fractional parabolic equations in divergence form with measurable coefficients, J. Funct. Anal., 278 (2020), 108338.
doi: 10.1016/j.jfa.2019.108338. |
[3] |
H. Dong and D. Kim,
$L_p$-estimates for time fractional parabolic equations with coefficients measurable in time, Adv. Math., 345 (2019), 289-345.
doi: 10.1016/j.aim.2019.01.016. |
[4] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2015. |
[5] |
B.-S. Han, K.-H. Kim and D. Park,
Weighed $L_{q}(L_{p})$-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives, J. Differ. Equ., 269 (2020), 3515-3550.
doi: 10.1016/j.jde.2020.03.005. |
[6] |
D. Kim, K.-H. Kim and K. Lee, Parabolic systems with measurable coefficients in weighted Sobolev spaces, arXiv: 1809.01325, (2018). Google Scholar |
[7] |
I. Kim, K.-H. Kim and S. Lim,
A Sobolev space theory for stochastic partial differential equations with time-fractional derivatives, Ann. Probab., 47 (2019), 2087-2139.
doi: 10.1214/18-AOP1303. |
[8] |
I. Kim, K.-H. Kim and S. Lim,
An $L_q(L_p)$-theory for the time fractional evolution equations with variable coefficients, Adv. Math., 306 (2017), 123-176.
doi: 10.1016/j.aim.2016.08.046. |
[9] |
K.-H. Kim,
On $L_{p}$-theory of stochastic partial differential equations of divergence form in $C^{1}$ domains, Probab. Theory. Rel., 130 (2004), 473-492.
doi: 10.1007/s00440-004-0368-5. |
[10] |
K.-H. Kim,
On stochastic partial differential equations with variable coefficients in $C^1$ domains, Stoch. Proc. Appl., 112 (2004), 261-283.
doi: 10.1016/j.spa.2004.02.006. |
[11] |
K.-H. Kim and N. V. Krylov,
On the Sobolev space theory of parabolic and elliptic equations in $C^1$ domains, SIAM J. Math. Anal., 36 (2004), 618-642.
doi: 10.1137/S0036141003421145. |
[12] |
K.-H. Kim and N. V. Krylov,
On SPDEs with variable coefficients in one space dimension, Potential Anal., 21 (2004), 209-239.
doi: 10.1023/B:POTA.0000033334.06990.9d. |
[13] |
K.-H. Kim and S. Lim,
Asymptotic behaviors of fundamental solution and its derivatives related to space-time fractional differential equations, J. Korean Math. Soc., 53 (2016), 929-967.
doi: 10.4134/JKMS.j150343. |
[14] |
N. V. Krylov and S. V. Lototsky,
A Sobolev space theory of SPDEs with constant coefficients on a half line, SIAM J. Math. Anal., 30 (1999), 298-325.
doi: 10.1137/S0036141097326908. |
[15] |
N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Amer. Math. Soc., Providence, 2008.
doi: 10.1090/gsm/096. |
[16] |
N. V. Krylov,
Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space, Comm. Partial Differential Equations, 24 (1999), 1611-1653.
doi: 10.1080/03605309908821478. |
[17] |
G. M. Lieberman,
Regularized distance and its applications, Pacific J. Math., 117 (1985), 329-352.
doi: 10.2140/pjm.1985.117.329. |
[18] |
S. V. Lototsky,
Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations, Methods. Appl. Anal., 7 (2000), 195-204.
doi: 10.4310/MAA.2000.v7.n1.a9. |
[19] |
F. Mainardi, Fractional diffusive waves in viscoelastic solids, Nonlinear waves in solids, 137 (1995), 93-97. Google Scholar |
[20] |
F. Mainardi and P. Paradisi,
Fractional diffusive waves, J. Comput. Acoust., 9 (2001), 1417-1436.
doi: 10.1142/S0218396X01000826. |
[21] |
R. Metzler, E. Barkai and J. Kalfter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82 (1999), 35-63. Google Scholar |
[22] |
R. Metzler and J. Klafter,
The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3. |
[23] |
I. Podludni, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 1999. |
[24] |
H. Richard, Fractional Calculus: An Introduction for Physicists, , World Scientific, 2014. Google Scholar |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, , CRC Press, 1993. |
[26] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[27] |
R. Zacher,
Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103.
doi: 10.1007/s00028-004-0161-z. |
[28] |
R. Zacher,
Global strong solvability of a quasilinear subdiffusion problem, J. Evol. Equ., 12 (2012), 813-831.
doi: 10.1007/s00028-012-0156-0. |
[1] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[2] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[3] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[4] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[5] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[6] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[7] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[8] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[9] |
Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151 |
[10] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[11] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[12] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[13] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[14] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020027 |
[15] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[16] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[17] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[18] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[19] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[20] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]