doi: 10.3934/dcds.2021003

Constant-speed ramps for a central force field

1. 

Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain

2. 

Department of Mathematics, Central Connecticut State University, New Britain, CT 06050, USA

* Corresponding author

Received  March 2020 Published  January 2021

Fund Project: Rafael López has partially supported by the grant no. MTM2017-89677-P, MINECO/AEI/FEDER, UE

We investigate the problem of determining the planar curves that describe ramps where a particle of mass $ m $ moves with constant-speed when is subject to the action of the friction force and a force whose magnitude $ F(r) $ depends only on the distance $ r $ from the origin. In this paper we describe all the constant-speed ramps for the case $ F(r) = -m/r $. We show the circles and the logarithmic spirals play an important role. Not only they are solutions but every other solution approaches either a circle or a logarithmic spiral.

Citation: Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2021003
References:
[1]

J. Bertrand, Théorème relatif au mouvement d'un point attiré vers un centre fixe, C. R. Acad. Sci., 77 (1873), 849-853.   Google Scholar

[2]

H. Goldstein, Classical Mechanics, Addison-Wesley, 2nd. edition, Reading, MA, 1980.  Google Scholar

[3]

O. M. Perdomo, A dynamical interpretation of cmc Twizzlers surfaces, Pacific J. Math., 258 (2012), 459-485.  doi: 10.2140/pjm.2012.258.459.  Google Scholar

[4]

O. M. Perdomo, Helicoidal minimal surfaces in $\mathbb{R}^3$, Illinois J. Math., 57 (2013), 87-104.  doi: 10.1215/ijm/1403534487.  Google Scholar

[5]

O. M. Perdomo, Constant-speed ramps, Pacific J. Math., 275 (2015), 1-18.  doi: 10.2140/pjm.2015.275.1.  Google Scholar

[6]

A. P. Usher, A History of Mechanical Inventions, Revised Edition. Dover, 1989.  Google Scholar

[7]

Wolfram Mathematica 7 Documentation. Google Scholar

show all references

References:
[1]

J. Bertrand, Théorème relatif au mouvement d'un point attiré vers un centre fixe, C. R. Acad. Sci., 77 (1873), 849-853.   Google Scholar

[2]

H. Goldstein, Classical Mechanics, Addison-Wesley, 2nd. edition, Reading, MA, 1980.  Google Scholar

[3]

O. M. Perdomo, A dynamical interpretation of cmc Twizzlers surfaces, Pacific J. Math., 258 (2012), 459-485.  doi: 10.2140/pjm.2012.258.459.  Google Scholar

[4]

O. M. Perdomo, Helicoidal minimal surfaces in $\mathbb{R}^3$, Illinois J. Math., 57 (2013), 87-104.  doi: 10.1215/ijm/1403534487.  Google Scholar

[5]

O. M. Perdomo, Constant-speed ramps, Pacific J. Math., 275 (2015), 1-18.  doi: 10.2140/pjm.2015.275.1.  Google Scholar

[6]

A. P. Usher, A History of Mechanical Inventions, Revised Edition. Dover, 1989.  Google Scholar

[7]

Wolfram Mathematica 7 Documentation. Google Scholar

Figure 1.  A mass $ M $ sliding along $ \alpha $ under the effect of a central force $ {\mathbf F}({\mathbf r}) $ and the friction force
Figure 2.  Case $ v = 1 $. The phase portrait of the system (17), with $ \mu = 0.5 $. The origin $ (0,0) $ is the only equilibrium point and it is a stable focus
Figure 3.  Case $ v = 1 $. The purple part of the logarithmic spiral (left) is the TreadmillSled of the non-circular ramp (right)
Figure 4.  The phase portrait of the system (21). Left: $ v = 2 $ and $ \mu = 0.1 $. Right: $ v = 0.5 $ and $ \mu = 0.3 $
Figure 5.  TreadmillSleds that are half-lines. Left: $ v = 2 $, $ \mu = 0.1 $. Right: $ v = 0.5 $, $ \mu = 0.3 $
Figure 6.  Constant-speed ramps whose TreadmillSleds are half-lines of Figure 5, left. Here $ v = 2 $, $ \mu = 0.1 $. Left: parametrization (23) for $ \mathbf{a} $. Right: parametrization (23) for $ -\mathbf{a} $
Figure 7.  Constant-speed ramps $ \alpha_{ls} $ whose TreadmillSleds $ \gamma_{ls} $ are the half-lines of Figure 5, right. Here $ v = 0.5 $ and $ \mu = 0.3 $. Left: parametrization (23) for $ \mathbf{a} $. Right: parametrization (23) for $ -\mathbf{a} $
Figure 8.  Constant-speed ramps whose TreadmillSleds are not half-lines. Here $ v = 2 $ and $ \mu = 0.1 $. Left: the TreadmillSled which is asymptotic to the line of vector $ \mathbf{a} $. Right: the constant-speed ramp
Figure 9.  Constant-speed ramps whose TreadmillSleds are not half-lines. Here $ v = 0.8 $ and $ \mu = 0.3 $. Left: the TreadmillSled. Right: the constant-speed ramp
Figure 10.  Constant-speed ramps that are not spirals. Left: $ v = 2 $ and $ \mu = 0.1 $. Right: $ v = 0.8 $ and $ \mu = 0.3 $
[1]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[2]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[3]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (14)
  • HTML views (45)
  • Cited by (0)

Other articles
by authors

[Back to Top]