We investigate the problem of determining the planar curves that describe ramps where a particle of mass $ m $ moves with constant-speed when is subject to the action of the friction force and a force whose magnitude $ F(r) $ depends only on the distance $ r $ from the origin. In this paper we describe all the constant-speed ramps for the case $ F(r) = -m/r $. We show the circles and the logarithmic spirals play an important role. Not only they are solutions but every other solution approaches either a circle or a logarithmic spiral.
Citation: |
Figure 6.
Constant-speed ramps whose TreadmillSleds are half-lines of Figure 5, left. Here
Figure 7.
Constant-speed ramps
[1] |
J. Bertrand, Théorème relatif au mouvement d'un point attiré vers un centre fixe, C. R. Acad. Sci., 77 (1873), 849-853.
![]() |
[2] |
H. Goldstein, Classical Mechanics, Addison-Wesley, 2nd. edition, Reading, MA, 1980.
![]() ![]() |
[3] |
O. M. Perdomo, A dynamical interpretation of cmc Twizzlers surfaces, Pacific J. Math., 258 (2012), 459-485.
doi: 10.2140/pjm.2012.258.459.![]() ![]() ![]() |
[4] |
O. M. Perdomo, Helicoidal minimal surfaces in $\mathbb{R}^3$, Illinois J. Math., 57 (2013), 87-104.
doi: 10.1215/ijm/1403534487.![]() ![]() ![]() |
[5] |
O. M. Perdomo, Constant-speed ramps, Pacific J. Math., 275 (2015), 1-18.
doi: 10.2140/pjm.2015.275.1.![]() ![]() ![]() |
[6] |
A. P. Usher, A History of Mechanical Inventions, Revised Edition. Dover, 1989.
![]() ![]() |
[7] |
Wolfram Mathematica 7 Documentation.
![]() |