
-
Previous Article
Another point of view on Kusuoka's measure
- DCDS Home
- This Issue
-
Next Article
Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance
Constant-speed ramps for a central force field
1. | Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain |
2. | Department of Mathematics, Central Connecticut State University, New Britain, CT 06050, USA |
We investigate the problem of determining the planar curves that describe ramps where a particle of mass $ m $ moves with constant-speed when is subject to the action of the friction force and a force whose magnitude $ F(r) $ depends only on the distance $ r $ from the origin. In this paper we describe all the constant-speed ramps for the case $ F(r) = -m/r $. We show the circles and the logarithmic spirals play an important role. Not only they are solutions but every other solution approaches either a circle or a logarithmic spiral.
References:
[1] |
J. Bertrand, Théorème relatif au mouvement d'un point attiré vers un centre fixe, C. R. Acad. Sci., 77 (1873), 849-853. Google Scholar |
[2] |
H. Goldstein, Classical Mechanics, Addison-Wesley, 2nd. edition, Reading, MA, 1980. |
[3] |
O. M. Perdomo,
A dynamical interpretation of cmc Twizzlers surfaces, Pacific J. Math., 258 (2012), 459-485.
doi: 10.2140/pjm.2012.258.459. |
[4] |
O. M. Perdomo,
Helicoidal minimal surfaces in $\mathbb{R}^3$, Illinois J. Math., 57 (2013), 87-104.
doi: 10.1215/ijm/1403534487. |
[5] |
O. M. Perdomo,
Constant-speed ramps, Pacific J. Math., 275 (2015), 1-18.
doi: 10.2140/pjm.2015.275.1. |
[6] |
A. P. Usher, A History of Mechanical Inventions, Revised Edition. Dover, 1989. |
[7] |
Wolfram Mathematica 7 Documentation. Google Scholar |
show all references
References:
[1] |
J. Bertrand, Théorème relatif au mouvement d'un point attiré vers un centre fixe, C. R. Acad. Sci., 77 (1873), 849-853. Google Scholar |
[2] |
H. Goldstein, Classical Mechanics, Addison-Wesley, 2nd. edition, Reading, MA, 1980. |
[3] |
O. M. Perdomo,
A dynamical interpretation of cmc Twizzlers surfaces, Pacific J. Math., 258 (2012), 459-485.
doi: 10.2140/pjm.2012.258.459. |
[4] |
O. M. Perdomo,
Helicoidal minimal surfaces in $\mathbb{R}^3$, Illinois J. Math., 57 (2013), 87-104.
doi: 10.1215/ijm/1403534487. |
[5] |
O. M. Perdomo,
Constant-speed ramps, Pacific J. Math., 275 (2015), 1-18.
doi: 10.2140/pjm.2015.275.1. |
[6] |
A. P. Usher, A History of Mechanical Inventions, Revised Edition. Dover, 1989. |
[7] |
Wolfram Mathematica 7 Documentation. Google Scholar |








[1] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[2] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[3] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]