• Previous Article
    Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators
  • DCDS Home
  • This Issue
  • Next Article
    A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains
July  2021, 41(7): 3447-3464. doi: 10.3934/dcds.2021003

Constant-speed ramps for a central force field

1. 

Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain

2. 

Department of Mathematics, Central Connecticut State University, New Britain, CT 06050, USA

* Corresponding author

Received  March 2020 Published  January 2021

Fund Project: Rafael López has partially supported by the grant no. MTM2017-89677-P, MINECO/AEI/FEDER, UE

We investigate the problem of determining the planar curves that describe ramps where a particle of mass $ m $ moves with constant-speed when is subject to the action of the friction force and a force whose magnitude $ F(r) $ depends only on the distance $ r $ from the origin. In this paper we describe all the constant-speed ramps for the case $ F(r) = -m/r $. We show the circles and the logarithmic spirals play an important role. Not only they are solutions but every other solution approaches either a circle or a logarithmic spiral.

Citation: Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003
References:
[1]

J. Bertrand, Théorème relatif au mouvement d'un point attiré vers un centre fixe, C. R. Acad. Sci., 77 (1873), 849-853.   Google Scholar

[2]

H. Goldstein, Classical Mechanics, Addison-Wesley, 2nd. edition, Reading, MA, 1980.  Google Scholar

[3]

O. M. Perdomo, A dynamical interpretation of cmc Twizzlers surfaces, Pacific J. Math., 258 (2012), 459-485.  doi: 10.2140/pjm.2012.258.459.  Google Scholar

[4]

O. M. Perdomo, Helicoidal minimal surfaces in $\mathbb{R}^3$, Illinois J. Math., 57 (2013), 87-104.  doi: 10.1215/ijm/1403534487.  Google Scholar

[5]

O. M. Perdomo, Constant-speed ramps, Pacific J. Math., 275 (2015), 1-18.  doi: 10.2140/pjm.2015.275.1.  Google Scholar

[6]

A. P. Usher, A History of Mechanical Inventions, Revised Edition. Dover, 1989.  Google Scholar

[7]

Wolfram Mathematica 7 Documentation. Google Scholar

show all references

References:
[1]

J. Bertrand, Théorème relatif au mouvement d'un point attiré vers un centre fixe, C. R. Acad. Sci., 77 (1873), 849-853.   Google Scholar

[2]

H. Goldstein, Classical Mechanics, Addison-Wesley, 2nd. edition, Reading, MA, 1980.  Google Scholar

[3]

O. M. Perdomo, A dynamical interpretation of cmc Twizzlers surfaces, Pacific J. Math., 258 (2012), 459-485.  doi: 10.2140/pjm.2012.258.459.  Google Scholar

[4]

O. M. Perdomo, Helicoidal minimal surfaces in $\mathbb{R}^3$, Illinois J. Math., 57 (2013), 87-104.  doi: 10.1215/ijm/1403534487.  Google Scholar

[5]

O. M. Perdomo, Constant-speed ramps, Pacific J. Math., 275 (2015), 1-18.  doi: 10.2140/pjm.2015.275.1.  Google Scholar

[6]

A. P. Usher, A History of Mechanical Inventions, Revised Edition. Dover, 1989.  Google Scholar

[7]

Wolfram Mathematica 7 Documentation. Google Scholar

Figure 1.  A mass $ M $ sliding along $ \alpha $ under the effect of a central force $ {\mathbf F}({\mathbf r}) $ and the friction force
Figure 2.  Case $ v = 1 $. The phase portrait of the system (17), with $ \mu = 0.5 $. The origin $ (0,0) $ is the only equilibrium point and it is a stable focus
Figure 3.  Case $ v = 1 $. The purple part of the logarithmic spiral (left) is the TreadmillSled of the non-circular ramp (right)
Figure 4.  The phase portrait of the system (21). Left: $ v = 2 $ and $ \mu = 0.1 $. Right: $ v = 0.5 $ and $ \mu = 0.3 $
Figure 5.  TreadmillSleds that are half-lines. Left: $ v = 2 $, $ \mu = 0.1 $. Right: $ v = 0.5 $, $ \mu = 0.3 $
Figure 5, left. Here $ v = 2 $, $ \mu = 0.1 $. Left: parametrization (23) for $ \mathbf{a} $. Right: parametrization (23) for $ -\mathbf{a} $">Figure 6.  Constant-speed ramps whose TreadmillSleds are half-lines of Figure 5, left. Here $ v = 2 $, $ \mu = 0.1 $. Left: parametrization (23) for $ \mathbf{a} $. Right: parametrization (23) for $ -\mathbf{a} $
Figure 5, right. Here $ v = 0.5 $ and $ \mu = 0.3 $. Left: parametrization (23) for $ \mathbf{a} $. Right: parametrization (23) for $ -\mathbf{a} $">Figure 7.  Constant-speed ramps $ \alpha_{ls} $ whose TreadmillSleds $ \gamma_{ls} $ are the half-lines of Figure 5, right. Here $ v = 0.5 $ and $ \mu = 0.3 $. Left: parametrization (23) for $ \mathbf{a} $. Right: parametrization (23) for $ -\mathbf{a} $
Figure 8.  Constant-speed ramps whose TreadmillSleds are not half-lines. Here $ v = 2 $ and $ \mu = 0.1 $. Left: the TreadmillSled which is asymptotic to the line of vector $ \mathbf{a} $. Right: the constant-speed ramp
Figure 9.  Constant-speed ramps whose TreadmillSleds are not half-lines. Here $ v = 0.8 $ and $ \mu = 0.3 $. Left: the TreadmillSled. Right: the constant-speed ramp
Figure 10.  Constant-speed ramps that are not spirals. Left: $ v = 2 $ and $ \mu = 0.1 $. Right: $ v = 0.8 $ and $ \mu = 0.3 $
[1]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[2]

Huaiyu Jian, Hongjie Ju, Wei Sun. Traveling fronts of curve flow with external force field. Communications on Pure & Applied Analysis, 2010, 9 (4) : 975-986. doi: 10.3934/cpaa.2010.9.975

[3]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[4]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[5]

Joshua E.S. Socolar. Discrete models of force chain networks. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 601-618. doi: 10.3934/dcdsb.2003.3.601

[6]

Jürgen Scheurle, Stephan Schmitz. A criterion for asymptotic straightness of force fields. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 777-792. doi: 10.3934/dcdsb.2010.14.777

[7]

Šárka Nečasová. Stokes and Oseen flow with Coriolis force in the exterior domain. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 339-351. doi: 10.3934/dcdss.2008.1.339

[8]

Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried. Force-based models of pedestrian dynamics. Networks & Heterogeneous Media, 2011, 6 (3) : 425-442. doi: 10.3934/nhm.2011.6.425

[9]

Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic & Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007

[10]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[11]

Yingzhe Fan, Yuanjie Lei. The Boltzmann equation with frictional force for very soft potentials in the whole space. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 4303-4329. doi: 10.3934/dcds.2019174

[12]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[13]

Joyce R. McLaughlin and Arturo Portnoy. Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force. Electronic Research Announcements, 1997, 3: 72-77.

[14]

Yiqian Wang. Boundedness of solutions in a class of Duffing equations with a bounded restore force. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 783-800. doi: 10.3934/dcds.2006.14.783

[15]

Zhigang Wu, Wenjun Wang. Uniform stability of the Boltzmann equation with an external force near vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 811-823. doi: 10.3934/cpaa.2015.14.811

[16]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[17]

Daniel Han-Kwan. $L^1$ averaging lemma for transport equations with Lipschitz force fields. Kinetic & Related Models, 2010, 3 (4) : 669-683. doi: 10.3934/krm.2010.3.669

[18]

Mi-Ho Giga, Yoshikazu Giga. A subdifferential interpretation of crystalline motion under nonuniform driving force. Conference Publications, 1998, 1998 (Special) : 276-287. doi: 10.3934/proc.1998.1998.276

[19]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[20]

Huiqiang Jiang. Energy minimizers of a thin film equation with born repulsion force. Communications on Pure & Applied Analysis, 2011, 10 (2) : 803-815. doi: 10.3934/cpaa.2011.10.803

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (47)
  • HTML views (118)
  • Cited by (0)

Other articles
by authors

[Back to Top]