-
Previous Article
Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems
- DCDS Home
- This Issue
-
Next Article
Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families
Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators
UMR 8088, CY Cergy Paris University, 2 avenue Adolphe Chauvain, Cergy, France |
We study the ergodic problem for fully nonlinear operators which may be singular or degenerate when at least one of the components of the gradient vanishes. We extend here the results in [
References:
[1] |
G. Barles and J. Busca,
Existence and comparison results for fully non linear degenerate elliptic equations without zeroth order terms, Communications in Partial Differential Equations, 26 (2001), 2323-2337.
doi: 10.1081/PDE-100107824. |
[2] |
G. Barles, E. Chasseigne and C. Imbert,
Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations, J. Eur. Math. Soc., 13 (2011), 1-26.
doi: 10.4171/JEMS/242. |
[3] |
G. Barles and F. Murat,
Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions, Archive for Rational Mechanics and Analysis, 133 (1995), 77-101.
doi: 10.1007/BF00375351. |
[4] |
G. Barles and A. Porretta,
Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equation, Ann. Scuola Norm. Sup Pisa, Cl Sci, 5 (2006), 107-136.
|
[5] |
G. Barles, A. Porretta and T. Tabet Tchamba,
On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations, Journal de Mathématique Pures et Appliquées, 94 (2010), 497-519.
doi: 10.1016/j.matpur.2010.03.006. |
[6] |
I. Birindelli and F. Demengel, First eigenvalue and Maximum principle for fully nonlinear singular operators, Advances in Differential Equations, Vol 11 (2006), 91–119. |
[7] |
I. Birindelli and F. Demengel,
Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci's operators, J. Elliptic Parabol. Equ., 2 (2016), 171-187.
doi: 10.1007/BF03377400. |
[8] |
I. Birindelli and F. Demengel,
$\mathcal{C}^{1, \beta} $ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations, ESAIM Control Optim. Calc. Var., 20 (2014), 1009-1024.
doi: 10.1051/cocv/2014005. |
[9] |
I. Birindelli, F. Demengel and F. Leoni, Dirichlet problems for fully nonlinear equations with "subquadratic" Hamiltonians, Contemporary research in elliptic PDEs and related topics, Springer INdAM Ser., 33, Springer, Cham, 2019, 107–127. |
[10] |
I. Birindelli, F. Demengel and F. Leoni, Ergodic pairs for singular or degenerate fully nonlinear operators, ESAIM Control Optim. Calc. Var., 25 (2019), Art. 75, 28 pp.
doi: 10.1051/cocv/2018070. |
[11] |
I. Birindelli, F. Demengel and F. Leoni, On the $\mathcal{C}^{1, \gamma}$ regularity for Fully non linear singular or degenerate equations with a subquadratic hamiltonian, NoDEA Nonlinear Differential Equations Appl., 26 (2019).
doi: 10.1007/s00030-019-0586-2. |
[12] |
P. Bousquet and L. Brasco,
$\mathcal{C}^1$ regularity of orthotropic p-harmonic functions in the plane, Anal. PDE, 11 (2018), 813-854.
doi: 10.2140/apde.2018.11.813. |
[13] |
P. Bousquet and L. Brasco, Lipschitz regularity for orthotropic functionals with non standard growth conditions, Rev. Mat. Iberoam., 36 (2020), 1989–2032. arXiv: 1810.03837v, et
doi: 10.4171/rmi/1189. |
[14] |
P. Bousquet, L. Brasco and V. Julin,
Lipschitz regularity for local minimizers of some widely degenerate problems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 1235-1274.
|
[15] |
L. Brasco and G. Carlier,
On certain anisotropic elliptic equations arising in congested optimal transport: Local gradient bounds, Adv. Calc. Var., 7 (2014), 379-407.
doi: 10.1515/acv-2013-0007. |
[16] |
I. Capuzzo Dolcetta, F. Leoni and A. Porretta,
Hölder's estimates for degenerate elliptic equations with coercive Hamiltonian, Transactions of the American Society, 362 (2010), 4511-4536.
doi: 10.1090/S0002-9947-10-04807-5. |
[17] |
M. G. Crandall, H. Ishii and P.-L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[18] |
F. Demengel,
Lipschitz interior regularity for the viscosity and weak solutions of the Pseudo $p$-Laplacian Equation, Advances in Differential Equations, 21 (2016), 373-400.
|
[19] |
F. Demengel,
Regularity properties of Viscosity Solutions for Fully Non linear Equations on the model of the anisotropic $\vec p$-Laplacian., Asymptotic Analysis, 105 (2017), 27-43.
doi: 10.3233/ASY-171433. |
[20] |
I. Fonseca, N. Fusco and P. Marcellini,
An existence result for a non convex variational problem via regularity, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 69-95.
doi: 10.1051/cocv:2002004. |
[21] |
H. Ishii, Viscosity solutions of Nonlinear fully nonlinear equations, Sugaku Expositions, Vol 9, number 2, December 1996. |
[22] |
H. Ishii and P.-L. Lions,
Viscosity solutions of Fully-Nonlinear Second Order Elliptic Partial Differential Equations, J. Differential Equations, 83 (1990), 26-78.
doi: 10.1016/0022-0396(90)90068-Z. |
[23] |
J.-M. Lasry and P.-L. Lions, Nonlinear Elliptic Equations with Singular Boundary Conditions and Stochastic Control with state Constraints,, Math. Ann., 283, (1989), 583–630.
doi: 10.1007/BF01442856. |
[24] |
T. Leonori and A. Porretta,
Large solutions and gradient bounds for quasilinear elliptic equations, Comm. in Partial Differential Equations, 41 (2016), 952-998.
doi: 10.1080/03605302.2016.1169286. |
[25] |
T. Leonori, A. Porretta and G. Riey,
Comparison principles for p-Laplace equations with lower order terms, Annali di Matematica Pura ed Applicata, 196 (2017), 877-903.
doi: 10.1007/s10231-016-0600-9. |
[26] |
P. Lindqvist and D. Ricciotti, Regularity for an anisotropic equation in the plane, Non Linear Analysis, 177, (2018), 628–636.
doi: 10.1016/j.na.2018.02.002. |
[27] |
A. Porretta,
The ergodic limit for a viscous Hamilton- Jacobi equation with Dirichlet conditions, Rend. Lincei Mat. Appl., 21 (2010), 59-78.
doi: 10.4171/RLM/561. |
[28] |
N. Uraltseva and N. Urdaletova, The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations, Vest. Leningr. UniV. Math, 16 (1984), 263-270. Google Scholar |
show all references
References:
[1] |
G. Barles and J. Busca,
Existence and comparison results for fully non linear degenerate elliptic equations without zeroth order terms, Communications in Partial Differential Equations, 26 (2001), 2323-2337.
doi: 10.1081/PDE-100107824. |
[2] |
G. Barles, E. Chasseigne and C. Imbert,
Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations, J. Eur. Math. Soc., 13 (2011), 1-26.
doi: 10.4171/JEMS/242. |
[3] |
G. Barles and F. Murat,
Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions, Archive for Rational Mechanics and Analysis, 133 (1995), 77-101.
doi: 10.1007/BF00375351. |
[4] |
G. Barles and A. Porretta,
Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equation, Ann. Scuola Norm. Sup Pisa, Cl Sci, 5 (2006), 107-136.
|
[5] |
G. Barles, A. Porretta and T. Tabet Tchamba,
On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations, Journal de Mathématique Pures et Appliquées, 94 (2010), 497-519.
doi: 10.1016/j.matpur.2010.03.006. |
[6] |
I. Birindelli and F. Demengel, First eigenvalue and Maximum principle for fully nonlinear singular operators, Advances in Differential Equations, Vol 11 (2006), 91–119. |
[7] |
I. Birindelli and F. Demengel,
Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci's operators, J. Elliptic Parabol. Equ., 2 (2016), 171-187.
doi: 10.1007/BF03377400. |
[8] |
I. Birindelli and F. Demengel,
$\mathcal{C}^{1, \beta} $ regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations, ESAIM Control Optim. Calc. Var., 20 (2014), 1009-1024.
doi: 10.1051/cocv/2014005. |
[9] |
I. Birindelli, F. Demengel and F. Leoni, Dirichlet problems for fully nonlinear equations with "subquadratic" Hamiltonians, Contemporary research in elliptic PDEs and related topics, Springer INdAM Ser., 33, Springer, Cham, 2019, 107–127. |
[10] |
I. Birindelli, F. Demengel and F. Leoni, Ergodic pairs for singular or degenerate fully nonlinear operators, ESAIM Control Optim. Calc. Var., 25 (2019), Art. 75, 28 pp.
doi: 10.1051/cocv/2018070. |
[11] |
I. Birindelli, F. Demengel and F. Leoni, On the $\mathcal{C}^{1, \gamma}$ regularity for Fully non linear singular or degenerate equations with a subquadratic hamiltonian, NoDEA Nonlinear Differential Equations Appl., 26 (2019).
doi: 10.1007/s00030-019-0586-2. |
[12] |
P. Bousquet and L. Brasco,
$\mathcal{C}^1$ regularity of orthotropic p-harmonic functions in the plane, Anal. PDE, 11 (2018), 813-854.
doi: 10.2140/apde.2018.11.813. |
[13] |
P. Bousquet and L. Brasco, Lipschitz regularity for orthotropic functionals with non standard growth conditions, Rev. Mat. Iberoam., 36 (2020), 1989–2032. arXiv: 1810.03837v, et
doi: 10.4171/rmi/1189. |
[14] |
P. Bousquet, L. Brasco and V. Julin,
Lipschitz regularity for local minimizers of some widely degenerate problems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 1235-1274.
|
[15] |
L. Brasco and G. Carlier,
On certain anisotropic elliptic equations arising in congested optimal transport: Local gradient bounds, Adv. Calc. Var., 7 (2014), 379-407.
doi: 10.1515/acv-2013-0007. |
[16] |
I. Capuzzo Dolcetta, F. Leoni and A. Porretta,
Hölder's estimates for degenerate elliptic equations with coercive Hamiltonian, Transactions of the American Society, 362 (2010), 4511-4536.
doi: 10.1090/S0002-9947-10-04807-5. |
[17] |
M. G. Crandall, H. Ishii and P.-L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[18] |
F. Demengel,
Lipschitz interior regularity for the viscosity and weak solutions of the Pseudo $p$-Laplacian Equation, Advances in Differential Equations, 21 (2016), 373-400.
|
[19] |
F. Demengel,
Regularity properties of Viscosity Solutions for Fully Non linear Equations on the model of the anisotropic $\vec p$-Laplacian., Asymptotic Analysis, 105 (2017), 27-43.
doi: 10.3233/ASY-171433. |
[20] |
I. Fonseca, N. Fusco and P. Marcellini,
An existence result for a non convex variational problem via regularity, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 69-95.
doi: 10.1051/cocv:2002004. |
[21] |
H. Ishii, Viscosity solutions of Nonlinear fully nonlinear equations, Sugaku Expositions, Vol 9, number 2, December 1996. |
[22] |
H. Ishii and P.-L. Lions,
Viscosity solutions of Fully-Nonlinear Second Order Elliptic Partial Differential Equations, J. Differential Equations, 83 (1990), 26-78.
doi: 10.1016/0022-0396(90)90068-Z. |
[23] |
J.-M. Lasry and P.-L. Lions, Nonlinear Elliptic Equations with Singular Boundary Conditions and Stochastic Control with state Constraints,, Math. Ann., 283, (1989), 583–630.
doi: 10.1007/BF01442856. |
[24] |
T. Leonori and A. Porretta,
Large solutions and gradient bounds for quasilinear elliptic equations, Comm. in Partial Differential Equations, 41 (2016), 952-998.
doi: 10.1080/03605302.2016.1169286. |
[25] |
T. Leonori, A. Porretta and G. Riey,
Comparison principles for p-Laplace equations with lower order terms, Annali di Matematica Pura ed Applicata, 196 (2017), 877-903.
doi: 10.1007/s10231-016-0600-9. |
[26] |
P. Lindqvist and D. Ricciotti, Regularity for an anisotropic equation in the plane, Non Linear Analysis, 177, (2018), 628–636.
doi: 10.1016/j.na.2018.02.002. |
[27] |
A. Porretta,
The ergodic limit for a viscous Hamilton- Jacobi equation with Dirichlet conditions, Rend. Lincei Mat. Appl., 21 (2010), 59-78.
doi: 10.4171/RLM/561. |
[28] |
N. Uraltseva and N. Urdaletova, The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations, Vest. Leningr. UniV. Math, 16 (1984), 263-270. Google Scholar |
[1] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[2] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[3] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[4] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[5] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[6] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[9] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[10] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[11] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[12] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[13] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[14] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[15] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[16] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[17] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[18] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[19] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[20] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]