- Previous Article
- DCDS Home
- This Issue
-
Next Article
Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators
On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow
1. | Department of Mathematical Sciences, Tsinghua University, Beijing, China |
2. | School of Mathematical Sciences, Beihang University, 100191 Beijing, China |
$ \varepsilon $ |
$ S^{N}_ \varepsilon $ |
$ c_S $ |
$ S^{N}_ \varepsilon |_{t = 0} = c_S+O( \varepsilon ) $ |
$ ( \rho^{N}_ \varepsilon , \, \boldsymbol{u}^{N}_ \varepsilon , \, S^{N}_ \varepsilon ) $ |
$ ( \rho_0, \, \boldsymbol{u}_0, \, c_S+ \varepsilon S_0) $ |
$ (1, \boldsymbol{0}, c_S) $ |
$ ( \rho^{N}_ \varepsilon , u^{N}_ \varepsilon ) $ |
$ ( \rho^{I}, \, u^{I}) $ |
$ ( \rho_0, \, \boldsymbol{u}_0) $ |
$ \begin{eqnarray*} ( \rho^{N}_ \varepsilon (t), \, \boldsymbol{u}^{N}_ \varepsilon (t)) = ( \rho^{I}(t), \, \boldsymbol{u}^{I}(t))+O(\epsilon), \end{eqnarray*} $ |
References:
[1] |
H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, , Grundlehren der Mathematischen Wissenschaften, Springer 2011.
doi: 10.1007/978-3-642-16830-7. |
[2] |
J.-M. Bony, Calcul symbolique et propagation des singularités pour les $\mathop {\rm{q}}\limits^{\rm{'}} $uations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209–246.
doi: 10.24033/asens.1404. |
[3] |
F. Charve and R. Danchin,
A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271.
doi: 10.1007/s00205-010-0306-x. |
[4] |
Q. Chen, C. Miao and Z. Zhang,
Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., 26 (2010), 915-946.
doi: 10.4171/RMI/621. |
[5] |
Q. Chen, C. Miao and Z. Zhang,
Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.
doi: 10.1002/cpa.20325. |
[6] |
Q. Chen, C. Miao and Z. Zhang,
On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces., Rev. Mat. Iberoam., 31 (2015), 1375-1402.
doi: 10.4171/RMI/872. |
[7] |
N. Chikami and R. Danchin,
On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces, J. Differential Equations, 258 (2015), 3435-3467.
doi: 10.1016/j.jde.2015.01.012. |
[8] |
R. Danchin,
Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.
doi: 10.1007/s002220000078. |
[9] |
R. Danchin,
Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.
doi: 10.1081/PDE-100106132. |
[10] |
R. Danchin,
Global existence in critical spaces for flows of compressible viscous and heat-conductive gases, Arch. Ration. Mech. Anal., 160 (2001), 1-39.
doi: 10.1007/s002050100155. |
[11] |
R. Danchin,
Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations, 32 (2007), 1373-1397.
doi: 10.1080/03605300600910399. |
[12] |
R. Danchin and L. He,
The incompressible limit in $L^p$ type critical spaces, Math. Ann., 366 (2016), 1365-1402.
doi: 10.1007/s00208-016-1361-x. |
[13] |
R. Danchin and P. B. Mucha,
Compressible Navier-Stokes system: large solutions and incompressible limit, Adv. Math., 320 (2017), 904-925.
doi: 10.1016/j.aim.2017.09.025. |
[14] |
R. Danchin and J. Xu,
Optimal Time-decay Estimates for the Compressible Navier-Stokes Equations in the Critical $L^p$Framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90.
doi: 10.1007/s00205-016-1067-y. |
[15] |
D. Fang, T. Zhang and R. Zi, Global solutions to the isentropic compressible Navier-Stokes equations with a class of large initial data, SIAM J. Math. Anal., 50 (2018), 4983–5026.
doi: 10.1137/17M1122062. |
[16] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004. |
[17] |
E. Feireisl and A. Novotný,
Weak-strong uniqueness property for the full Navier-Stokes-Fourier system., Arch. Ration. Mech. Anal., 204 (2012), 683-706.
doi: 10.1007/s00205-011-0490-3. |
[18] |
B. Haspot,
Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202 (2011), 427-460.
doi: 10.1007/s00205-011-0430-2. |
[19] |
B. Haspot,
Global existence of strong solutions for viscous shallow water system with large initial data on the rotational part, J. Differential Equations, 262 (2017), 4931-4978.
doi: 10.1016/j.jde.2017.01.010. |
[20] |
X. Huang, J. Li and Z. Xin,
Global well-posedness of classical solutions with large oscillations and vacuum to the three dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382. |
[21] |
X. Huang and J. Li,
Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, Arch. Ration. Mech. Anal., 227 (2018), 995-1059.
doi: 10.1007/s00205-017-1188-y. |
[22] |
A. Matsumura and T. Nishida,
The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337-342.
doi: 10.3792/pjaa.55.337. |
[23] |
A. Matsumura and T. Nishida,
The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.
doi: 10.1215/kjm/1250522322. |
[24] |
J. Nash,
Le problème de Cauchy pour les équations différentielles d'un fluide général, Bulletin de la Soc. Math. de France, 90 (1962), 487-497.
doi: 10.24033/bsmf.1586. |
show all references
References:
[1] |
H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, , Grundlehren der Mathematischen Wissenschaften, Springer 2011.
doi: 10.1007/978-3-642-16830-7. |
[2] |
J.-M. Bony, Calcul symbolique et propagation des singularités pour les $\mathop {\rm{q}}\limits^{\rm{'}} $uations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209–246.
doi: 10.24033/asens.1404. |
[3] |
F. Charve and R. Danchin,
A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271.
doi: 10.1007/s00205-010-0306-x. |
[4] |
Q. Chen, C. Miao and Z. Zhang,
Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., 26 (2010), 915-946.
doi: 10.4171/RMI/621. |
[5] |
Q. Chen, C. Miao and Z. Zhang,
Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.
doi: 10.1002/cpa.20325. |
[6] |
Q. Chen, C. Miao and Z. Zhang,
On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces., Rev. Mat. Iberoam., 31 (2015), 1375-1402.
doi: 10.4171/RMI/872. |
[7] |
N. Chikami and R. Danchin,
On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces, J. Differential Equations, 258 (2015), 3435-3467.
doi: 10.1016/j.jde.2015.01.012. |
[8] |
R. Danchin,
Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.
doi: 10.1007/s002220000078. |
[9] |
R. Danchin,
Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.
doi: 10.1081/PDE-100106132. |
[10] |
R. Danchin,
Global existence in critical spaces for flows of compressible viscous and heat-conductive gases, Arch. Ration. Mech. Anal., 160 (2001), 1-39.
doi: 10.1007/s002050100155. |
[11] |
R. Danchin,
Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations, 32 (2007), 1373-1397.
doi: 10.1080/03605300600910399. |
[12] |
R. Danchin and L. He,
The incompressible limit in $L^p$ type critical spaces, Math. Ann., 366 (2016), 1365-1402.
doi: 10.1007/s00208-016-1361-x. |
[13] |
R. Danchin and P. B. Mucha,
Compressible Navier-Stokes system: large solutions and incompressible limit, Adv. Math., 320 (2017), 904-925.
doi: 10.1016/j.aim.2017.09.025. |
[14] |
R. Danchin and J. Xu,
Optimal Time-decay Estimates for the Compressible Navier-Stokes Equations in the Critical $L^p$Framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90.
doi: 10.1007/s00205-016-1067-y. |
[15] |
D. Fang, T. Zhang and R. Zi, Global solutions to the isentropic compressible Navier-Stokes equations with a class of large initial data, SIAM J. Math. Anal., 50 (2018), 4983–5026.
doi: 10.1137/17M1122062. |
[16] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004. |
[17] |
E. Feireisl and A. Novotný,
Weak-strong uniqueness property for the full Navier-Stokes-Fourier system., Arch. Ration. Mech. Anal., 204 (2012), 683-706.
doi: 10.1007/s00205-011-0490-3. |
[18] |
B. Haspot,
Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202 (2011), 427-460.
doi: 10.1007/s00205-011-0430-2. |
[19] |
B. Haspot,
Global existence of strong solutions for viscous shallow water system with large initial data on the rotational part, J. Differential Equations, 262 (2017), 4931-4978.
doi: 10.1016/j.jde.2017.01.010. |
[20] |
X. Huang, J. Li and Z. Xin,
Global well-posedness of classical solutions with large oscillations and vacuum to the three dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.
doi: 10.1002/cpa.21382. |
[21] |
X. Huang and J. Li,
Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, Arch. Ration. Mech. Anal., 227 (2018), 995-1059.
doi: 10.1007/s00205-017-1188-y. |
[22] |
A. Matsumura and T. Nishida,
The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337-342.
doi: 10.3792/pjaa.55.337. |
[23] |
A. Matsumura and T. Nishida,
The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.
doi: 10.1215/kjm/1250522322. |
[24] |
J. Nash,
Le problème de Cauchy pour les équations différentielles d'un fluide général, Bulletin de la Soc. Math. de France, 90 (1962), 487-497.
doi: 10.24033/bsmf.1586. |
[1] |
Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673 |
[2] |
Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021 |
[3] |
Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477 |
[4] |
Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic and Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021 |
[5] |
Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic and Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010 |
[6] |
Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic and Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615 |
[7] |
Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495 |
[8] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[9] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[10] |
Yannick Holle, Michael Herty, Michael Westdickenberg. New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15 (4) : 605-631. doi: 10.3934/nhm.2020016 |
[11] |
Lvqiao liu, Lan Zhang. Optimal decay to the non-isentropic compressible micropolar fluids. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4575-4598. doi: 10.3934/cpaa.2020207 |
[12] |
Yanmin Mu. Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces. Kinetic and Related Models, 2014, 7 (4) : 739-753. doi: 10.3934/krm.2014.7.739 |
[13] |
Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009 |
[14] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[15] |
Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595 |
[16] |
Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 |
[17] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[18] |
Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719 |
[19] |
Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 |
[20] |
Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks and Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]