-
Previous Article
Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case
- DCDS Home
- This Issue
-
Next Article
Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem
Möbius disjointness for skew products on a circle and a nilmanifold
1. | CAS Wu Wen-Tsun Key Laboratory of Mathematics & Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China |
2. | School of Mathematics & Data Science Institute, Shandong University, Jinan, Shandong 250100, China |
Let $ \mathbb{T} $ be the unit circle and $ \Gamma \backslash G $ the $ 3 $-dimensional Heisenberg nilmanifold. We prove that a class of skew products on $ \mathbb{T} \times \Gamma \backslash G $ are distal, and that the Möbius function is linearly disjoint from these skew products. This verifies the Möbius Disjointness Conjecture of Sarnak.
References:
[1] |
J. Bourgain,
On the correlation of the Möbius function with rank-one systems, J. Anal. Math., 120 (2013), 105-130.
doi: 10.1007/s11854-013-0016-z. |
[2] |
J. Bourgain, P. Sarnak and T. Ziegler, Disjointness of Möbius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., vol. 28, Springer, New York, 2013, 67–83.
doi: 10.1007/978-1-4614-4075-8_5. |
[3] |
H. Davenport,
On some infinite series involving arithmetical functions, II, Quart. J. Math., 8 (1937), 313-350.
doi: 10.1093/qmath/os-8.1.313. |
[4] |
A. de Faveri, Möbius disjiontness for $C^{1+\epsilon}$ skew products, preprint, arXiv: 2002.01076. Google Scholar |
[5] |
A.-H. Fan and Y. Jiang,
Oscillating sequences, MMA and MMLS flows and Sarnak's conjecture, Ergodic Theory Dynam. Systems, 38 (2018), 1709-1744.
doi: 10.1017/etds.2016.121. |
[6] |
S. Ferenczi, J. Kulaga-Przymus and M. Lemanczyk, Sarnak's conjecture: What's new, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, Lecture Notes in Math., vol. 2213, Springer, Cham, 2018,163–235. |
[7] |
H. Furstenberg,
Strict ergodicity and transformation of the torus, Amer. J. Math., 83 (1961), 573-601.
doi: 10.2307/2372899. |
[8] |
H. Furstenberg,
The structure of distal flows, Amer. J. Math., 85 (1963), 477-515.
doi: 10.2307/2373137. |
[9] |
B. Green and T. Tao,
The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math., 175 (2012), 465-540.
doi: 10.4007/annals.2012.175.2.2. |
[10] |
B. Green and T. Tao,
The Möbius function is strongly orthogonal to nilsequences, Ann. of Math., 175 (2012), 541-566.
doi: 10.4007/annals.2012.175.2.3. |
[11] |
L. K. Hua, Additive theory of prime numbers, Transl. Math. Monogr. 13, Amer. Math. Soc., Providence, 1965. |
[12] |
W. Huang, Z. Wang and X. Ye,
Measure complexity and Möbius disjointness, Adv. Math., 347 (2019), 827-858.
doi: 10.1016/j.aim.2019.03.007. |
[13] |
W. Huang, Z. Wang and G. Zhang,
Möbius disjointness for topological model of any ergodic system with discrete spectrum, J. Mod. Dyn., 14 (2019), 277-290.
doi: 10.3934/jmd.2019010. |
[14] |
A. Kanigowski, M. Lemanczyk and M. Radziwill, Rigidity in dynamics and Möbius disjointness, preprint, arXiv: 1905.13256v2. Google Scholar |
[15] |
M. Litman and Z. Wang,
Möbius disjointness for skew products on the Heisenberg nilmanifold, Proc. Amer. Math. Soc., 147 (2019), 2033-2043.
doi: 10.1090/proc/14259. |
[16] |
J. Liu and P. Sarnak,
The Möbius function and distal flows, Duke Math. J., 164 (2015), 1353-1399.
doi: 10.1215/00127094-2916213. |
[17] |
J. Liu and P. Sarnak, The Möbius disjointness conjecture for distal flows, in Proceedings of the Sixth International Congress of Chinese Mathematician, Vol. I, Adv. Lect. Math. (ALM) 36, Int. Press, Somerville, MA, 2017, 327-335. |
[18] |
A. I. Mal'cev,
On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13 (1949), 9-32.
|
[19] |
K. Matomäki, M. Radziwill and T. Tao,
An averaged form of Chowla's conjecture, Algebra Number Theory, 9 (2015), 2167-2196.
doi: 10.2140/ant.2015.9.2167. |
[20] |
W. Parry, Zero entropy of distal and related transformations, Topological Dynamics, (Symposium, Colorado State Univ., Ft. Collins, Colo., 1967), 383–389. |
[21] |
R. Peckner,
Möbius disjointness for homogeneous dynamics, Duke Math. J., 167 (2018), 2745-2792.
doi: 10.1215/00127094-2018-0026. |
[22] |
P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, IAS Lecture Notes, 2009; https://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf. Google Scholar |
[23] |
P. Sarnak,
Möbius randomness and dynamics, Not. S. Afr. Math. Soc., 43 (2012), 89-97.
|
[24] |
R. Tolimieri,
Analysis on the Heisenberg manifold, Trans. Amer. Math. Soc., 288 (1977), 329-343.
doi: 10.2307/1998533. |
[25] |
Z. Wang,
Möbius disjointness for analytic skew products, Invent. Math., 209 (2017), 175-196.
doi: 10.1007/s00222-016-0707-z. |
show all references
References:
[1] |
J. Bourgain,
On the correlation of the Möbius function with rank-one systems, J. Anal. Math., 120 (2013), 105-130.
doi: 10.1007/s11854-013-0016-z. |
[2] |
J. Bourgain, P. Sarnak and T. Ziegler, Disjointness of Möbius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math., vol. 28, Springer, New York, 2013, 67–83.
doi: 10.1007/978-1-4614-4075-8_5. |
[3] |
H. Davenport,
On some infinite series involving arithmetical functions, II, Quart. J. Math., 8 (1937), 313-350.
doi: 10.1093/qmath/os-8.1.313. |
[4] |
A. de Faveri, Möbius disjiontness for $C^{1+\epsilon}$ skew products, preprint, arXiv: 2002.01076. Google Scholar |
[5] |
A.-H. Fan and Y. Jiang,
Oscillating sequences, MMA and MMLS flows and Sarnak's conjecture, Ergodic Theory Dynam. Systems, 38 (2018), 1709-1744.
doi: 10.1017/etds.2016.121. |
[6] |
S. Ferenczi, J. Kulaga-Przymus and M. Lemanczyk, Sarnak's conjecture: What's new, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, Lecture Notes in Math., vol. 2213, Springer, Cham, 2018,163–235. |
[7] |
H. Furstenberg,
Strict ergodicity and transformation of the torus, Amer. J. Math., 83 (1961), 573-601.
doi: 10.2307/2372899. |
[8] |
H. Furstenberg,
The structure of distal flows, Amer. J. Math., 85 (1963), 477-515.
doi: 10.2307/2373137. |
[9] |
B. Green and T. Tao,
The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math., 175 (2012), 465-540.
doi: 10.4007/annals.2012.175.2.2. |
[10] |
B. Green and T. Tao,
The Möbius function is strongly orthogonal to nilsequences, Ann. of Math., 175 (2012), 541-566.
doi: 10.4007/annals.2012.175.2.3. |
[11] |
L. K. Hua, Additive theory of prime numbers, Transl. Math. Monogr. 13, Amer. Math. Soc., Providence, 1965. |
[12] |
W. Huang, Z. Wang and X. Ye,
Measure complexity and Möbius disjointness, Adv. Math., 347 (2019), 827-858.
doi: 10.1016/j.aim.2019.03.007. |
[13] |
W. Huang, Z. Wang and G. Zhang,
Möbius disjointness for topological model of any ergodic system with discrete spectrum, J. Mod. Dyn., 14 (2019), 277-290.
doi: 10.3934/jmd.2019010. |
[14] |
A. Kanigowski, M. Lemanczyk and M. Radziwill, Rigidity in dynamics and Möbius disjointness, preprint, arXiv: 1905.13256v2. Google Scholar |
[15] |
M. Litman and Z. Wang,
Möbius disjointness for skew products on the Heisenberg nilmanifold, Proc. Amer. Math. Soc., 147 (2019), 2033-2043.
doi: 10.1090/proc/14259. |
[16] |
J. Liu and P. Sarnak,
The Möbius function and distal flows, Duke Math. J., 164 (2015), 1353-1399.
doi: 10.1215/00127094-2916213. |
[17] |
J. Liu and P. Sarnak, The Möbius disjointness conjecture for distal flows, in Proceedings of the Sixth International Congress of Chinese Mathematician, Vol. I, Adv. Lect. Math. (ALM) 36, Int. Press, Somerville, MA, 2017, 327-335. |
[18] |
A. I. Mal'cev,
On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13 (1949), 9-32.
|
[19] |
K. Matomäki, M. Radziwill and T. Tao,
An averaged form of Chowla's conjecture, Algebra Number Theory, 9 (2015), 2167-2196.
doi: 10.2140/ant.2015.9.2167. |
[20] |
W. Parry, Zero entropy of distal and related transformations, Topological Dynamics, (Symposium, Colorado State Univ., Ft. Collins, Colo., 1967), 383–389. |
[21] |
R. Peckner,
Möbius disjointness for homogeneous dynamics, Duke Math. J., 167 (2018), 2745-2792.
doi: 10.1215/00127094-2018-0026. |
[22] |
P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, IAS Lecture Notes, 2009; https://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf. Google Scholar |
[23] |
P. Sarnak,
Möbius randomness and dynamics, Not. S. Afr. Math. Soc., 43 (2012), 89-97.
|
[24] |
R. Tolimieri,
Analysis on the Heisenberg manifold, Trans. Amer. Math. Soc., 288 (1977), 329-343.
doi: 10.2307/1998533. |
[25] |
Z. Wang,
Möbius disjointness for analytic skew products, Invent. Math., 209 (2017), 175-196.
doi: 10.1007/s00222-016-0707-z. |
[1] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[2] |
Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79 |
[3] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[4] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[5] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[6] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[7] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[8] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[9] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[10] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]