
-
Previous Article
Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed
- DCDS Home
- This Issue
-
Next Article
Möbius disjointness for skew products on a circle and a nilmanifold
Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative
1. | Université de Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France |
2. | Departamento de Matemática y C.C., Universidad de Santiago de Chile, Casilla 307, Santiago, Chile |
3. | Departamento de Matemática, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, P.O. Box 17-01-2759, Quito, Ecuador |
We obtain some Hölder regularity estimates for an Hamilton-Jacobi with fractional time derivative of order $ \alpha \in (0, 1) $ cast by a Caputo derivative. The Hölder seminorms are independent of time, which allows to investigate the large time behavior of the solutions. We focus on the Namah-Roquejoffre setting whose typical example is the Eikonal equation. Contrary to the classical time derivative case $ \alpha = 1 $, the convergence of the solution on the so-called projected Aubry set, which is an important step to catch the large time behavior, is not straightforward. Indeed, a function with nonpositive Caputo derivative for all time does not necessarily converge; we provide such a counterexample. However, we establish partial results of convergence under some geometrical assumptions.
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied Mathematics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. |
[2] |
Y. Achdou, G. Barles, H. Ishii and G. L. Litvinov, Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, volume 2074 of Lecture Notes in Mathematics, Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2013. Lecture Notes from the CIME Summer School held in Cetraro, August 29–September 3, 2011, Edited by Paola Loreti and Nicoletta Anna Tchou, Fondazione CIME/CIME Foundation Subseries.
doi: 10.1007/978-3-642-36433-4. |
[3] |
M Allen, L. Caffarelli and A. Vasseur,
A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.
doi: 10.1007/s00205-016-0969-z. |
[4] |
G. Barles and P. E. Souganidis,
On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31 (2000), 925-939.
doi: 10.1137/S0036141099350869. |
[5] |
G. Barles, E. Chasseigne and C. Imbert,
Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations, J. Eur. Math. Soc. (JEMS), 13 (2011), 1-26.
doi: 10.4171/JEMS/242. |
[6] |
G. Barles and C. Imbert,
Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567-585.
doi: 10.1016/j.anihpc.2007.02.007. |
[7] |
G. Barles, H. Ishii and H. Mitake,
A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations, Bull. Math. Sci., 3 (2013), 363-388.
doi: 10.1007/s13373-013-0036-0. |
[8] |
F. Camilli, R. De Maio and E. Lacomini,
A Hopf-Lax formula for Hamilton-Jacobi equations with Caputo time derivative, J. Math. Anal. Appl., 477 (2019), 1019-1032.
doi: 10.1016/j.jmaa.2019.04.069. |
[9] |
A. Davini and A. Siconolfi,
A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38 (2006), 478-502.
doi: 10.1137/050621955. |
[10] |
K. Diethelm, The Analysis of Fractional Differential Equations, volume 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. Springer-Verlag, New York, 2010.
doi: 10.1007/978-3-642-14574-2. |
[11] |
K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990. |
[12] |
A. Fathi,
Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.
doi: 10.1016/S0764-4442(98)80144-4. |
[13] |
A. Fathi and A. Siconolfi,
Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.
doi: 10.1007/s00222-003-0323-6. |
[14] |
A. Fathi and A. Siconolfi,
PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians, Calc. Var. Partial Differential Equations, 22 (2005), 185-228.
doi: 10.1007/s00526-004-0271-z. |
[15] |
Y. Feng, L. Li, J. G. Liu and X. Xu,
Continuous and discrete one dimensional autonomous fractional ODEs, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3109-3135.
doi: 10.3934/dcdsb.2017210. |
[16] |
Y. Giga and T. Namba,
Well-posedness of Hamilton-Jacobi equations with Caputo's time fractional derivative, Comm. Partial Differential Equations, 42 (2017), 1088-1120.
doi: 10.1080/03605302.2017.1324880. |
[17] |
R. Gorenflo, A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Springer, Heidelberg, 2014.
doi: 10.1007/978-3-662-43930-2. |
[18] |
H. Ishii, Asymptotic solutions of Hamilton-Jacobi equations for large time and related topics, In ICIAM 07—6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zürich, (2009), 193–217. |
[19] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, volume 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006. |
[20] |
P.-L. Lions, B. Papanicolaou and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi Equations, Unpublished, 1986. Google Scholar |
[21] |
G. Namah and J.-M. Roquejoffre,
Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations, 24 (1999), 883-893.
doi: 10.1080/03605309908821451. |
[22] |
T. Namba, On existence and uniqueness of viscosity solutions for second order fully nonlinear PDEs with Caputo time fractional derivatives, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 23, 39 pp.
doi: 10.1007/s00030-018-0513-y. |
[23] |
T. Simon,
Comparing Fréchet and positive stable laws, Electron. J. Probab., 19 (2014), 1-25.
doi: 10.1214/EJP.v19-3058. |
[24] |
E. Topp and M. Yangari,
Existence and uniqueness for parabolic problems with Caputo time derivative, J. Differential Equations, 262 (2017), 6018-6046.
doi: 10.1016/j.jde.2017.02.024. |
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied Mathematics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. |
[2] |
Y. Achdou, G. Barles, H. Ishii and G. L. Litvinov, Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, volume 2074 of Lecture Notes in Mathematics, Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2013. Lecture Notes from the CIME Summer School held in Cetraro, August 29–September 3, 2011, Edited by Paola Loreti and Nicoletta Anna Tchou, Fondazione CIME/CIME Foundation Subseries.
doi: 10.1007/978-3-642-36433-4. |
[3] |
M Allen, L. Caffarelli and A. Vasseur,
A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.
doi: 10.1007/s00205-016-0969-z. |
[4] |
G. Barles and P. E. Souganidis,
On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31 (2000), 925-939.
doi: 10.1137/S0036141099350869. |
[5] |
G. Barles, E. Chasseigne and C. Imbert,
Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations, J. Eur. Math. Soc. (JEMS), 13 (2011), 1-26.
doi: 10.4171/JEMS/242. |
[6] |
G. Barles and C. Imbert,
Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567-585.
doi: 10.1016/j.anihpc.2007.02.007. |
[7] |
G. Barles, H. Ishii and H. Mitake,
A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations, Bull. Math. Sci., 3 (2013), 363-388.
doi: 10.1007/s13373-013-0036-0. |
[8] |
F. Camilli, R. De Maio and E. Lacomini,
A Hopf-Lax formula for Hamilton-Jacobi equations with Caputo time derivative, J. Math. Anal. Appl., 477 (2019), 1019-1032.
doi: 10.1016/j.jmaa.2019.04.069. |
[9] |
A. Davini and A. Siconolfi,
A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38 (2006), 478-502.
doi: 10.1137/050621955. |
[10] |
K. Diethelm, The Analysis of Fractional Differential Equations, volume 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. Springer-Verlag, New York, 2010.
doi: 10.1007/978-3-642-14574-2. |
[11] |
K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990. |
[12] |
A. Fathi,
Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.
doi: 10.1016/S0764-4442(98)80144-4. |
[13] |
A. Fathi and A. Siconolfi,
Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.
doi: 10.1007/s00222-003-0323-6. |
[14] |
A. Fathi and A. Siconolfi,
PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians, Calc. Var. Partial Differential Equations, 22 (2005), 185-228.
doi: 10.1007/s00526-004-0271-z. |
[15] |
Y. Feng, L. Li, J. G. Liu and X. Xu,
Continuous and discrete one dimensional autonomous fractional ODEs, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3109-3135.
doi: 10.3934/dcdsb.2017210. |
[16] |
Y. Giga and T. Namba,
Well-posedness of Hamilton-Jacobi equations with Caputo's time fractional derivative, Comm. Partial Differential Equations, 42 (2017), 1088-1120.
doi: 10.1080/03605302.2017.1324880. |
[17] |
R. Gorenflo, A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Springer, Heidelberg, 2014.
doi: 10.1007/978-3-662-43930-2. |
[18] |
H. Ishii, Asymptotic solutions of Hamilton-Jacobi equations for large time and related topics, In ICIAM 07—6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zürich, (2009), 193–217. |
[19] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, volume 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006. |
[20] |
P.-L. Lions, B. Papanicolaou and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi Equations, Unpublished, 1986. Google Scholar |
[21] |
G. Namah and J.-M. Roquejoffre,
Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations, 24 (1999), 883-893.
doi: 10.1080/03605309908821451. |
[22] |
T. Namba, On existence and uniqueness of viscosity solutions for second order fully nonlinear PDEs with Caputo time fractional derivatives, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 23, 39 pp.
doi: 10.1007/s00030-018-0513-y. |
[23] |
T. Simon,
Comparing Fréchet and positive stable laws, Electron. J. Probab., 19 (2014), 1-25.
doi: 10.1214/EJP.v19-3058. |
[24] |
E. Topp and M. Yangari,
Existence and uniqueness for parabolic problems with Caputo time derivative, J. Differential Equations, 262 (2017), 6018-6046.
doi: 10.1016/j.jde.2017.02.024. |

[1] |
Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021030 |
[2] |
Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020044 |
[3] |
Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191 |
[4] |
Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065 |
[5] |
Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057 |
[6] |
Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 |
[7] |
Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277 |
[8] |
Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17 |
[9] |
Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053 |
[10] |
Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160 |
[11] |
Martin Bohner, Osman Tunç. Qualitative analysis of integro-differential equations with variable retardation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021059 |
[12] |
Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053 |
[13] |
Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541 |
[14] |
Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977 |
[15] |
Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693 |
[16] |
Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015 |
[17] |
Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119 |
[18] |
Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041 |
[19] |
Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249 |
[20] |
Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]