doi: 10.3934/dcds.2021007

Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative

1. 

Université de Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

2. 

Departamento de Matemática y C.C., Universidad de Santiago de Chile, Casilla 307, Santiago, Chile

3. 

Departamento de Matemática, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, P.O. Box 17-01-2759, Quito, Ecuador

* Corresponding author: Erwin Topp

Received  February 2020 Published  January 2021

Fund Project: Part of this work was done during a visit of E.T. and M.Y. to the Institut de Recherche Math´ematique de Rennes. They acknowledge the hospitality of the Institut

We obtain some Hölder regularity estimates for an Hamilton-Jacobi with fractional time derivative of order $ \alpha \in (0, 1) $ cast by a Caputo derivative. The Hölder seminorms are independent of time, which allows to investigate the large time behavior of the solutions. We focus on the Namah-Roquejoffre setting whose typical example is the Eikonal equation. Contrary to the classical time derivative case $ \alpha = 1 $, the convergence of the solution on the so-called projected Aubry set, which is an important step to catch the large time behavior, is not straightforward. Indeed, a function with nonpositive Caputo derivative for all time does not necessarily converge; we provide such a counterexample. However, we establish partial results of convergence under some geometrical assumptions.

Citation: Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2021007
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied Mathematics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.  Google Scholar

[2]

Y. Achdou, G. Barles, H. Ishii and G. L. Litvinov, Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, volume 2074 of Lecture Notes in Mathematics, Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2013. Lecture Notes from the CIME Summer School held in Cetraro, August 29–September 3, 2011, Edited by Paola Loreti and Nicoletta Anna Tchou, Fondazione CIME/CIME Foundation Subseries. doi: 10.1007/978-3-642-36433-4.  Google Scholar

[3]

M AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[4]

G. Barles and P. E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31 (2000), 925-939.  doi: 10.1137/S0036141099350869.  Google Scholar

[5]

G. BarlesE. Chasseigne and C. Imbert, Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations, J. Eur. Math. Soc. (JEMS), 13 (2011), 1-26.  doi: 10.4171/JEMS/242.  Google Scholar

[6]

G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567-585.  doi: 10.1016/j.anihpc.2007.02.007.  Google Scholar

[7]

G. BarlesH. Ishii and H. Mitake, A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations, Bull. Math. Sci., 3 (2013), 363-388.  doi: 10.1007/s13373-013-0036-0.  Google Scholar

[8]

F. CamilliR. De Maio and E. Lacomini, A Hopf-Lax formula for Hamilton-Jacobi equations with Caputo time derivative, J. Math. Anal. Appl., 477 (2019), 1019-1032.  doi: 10.1016/j.jmaa.2019.04.069.  Google Scholar

[9]

A. Davini and A. Siconolfi, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38 (2006), 478-502.  doi: 10.1137/050621955.  Google Scholar

[10]

K. Diethelm, The Analysis of Fractional Differential Equations, volume 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. Springer-Verlag, New York, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[11]

K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990.  Google Scholar

[12]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.  doi: 10.1016/S0764-4442(98)80144-4.  Google Scholar

[13]

A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.  doi: 10.1007/s00222-003-0323-6.  Google Scholar

[14]

A. Fathi and A. Siconolfi, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians, Calc. Var. Partial Differential Equations, 22 (2005), 185-228.  doi: 10.1007/s00526-004-0271-z.  Google Scholar

[15]

Y. FengL. LiJ. G. Liu and X. Xu, Continuous and discrete one dimensional autonomous fractional ODEs, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3109-3135.  doi: 10.3934/dcdsb.2017210.  Google Scholar

[16]

Y. Giga and T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo's time fractional derivative, Comm. Partial Differential Equations, 42 (2017), 1088-1120.  doi: 10.1080/03605302.2017.1324880.  Google Scholar

[17]

R. Gorenflo, A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[18]

H. Ishii, Asymptotic solutions of Hamilton-Jacobi equations for large time and related topics, In ICIAM 07—6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zürich, (2009), 193–217.  Google Scholar

[19]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, volume 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[20]

P.-L. Lions, B. Papanicolaou and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi Equations, Unpublished, 1986. Google Scholar

[21]

G. Namah and J.-M. Roquejoffre, Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations, 24 (1999), 883-893.  doi: 10.1080/03605309908821451.  Google Scholar

[22]

T. Namba, On existence and uniqueness of viscosity solutions for second order fully nonlinear PDEs with Caputo time fractional derivatives, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 23, 39 pp. doi: 10.1007/s00030-018-0513-y.  Google Scholar

[23]

T. Simon, Comparing Fréchet and positive stable laws, Electron. J. Probab., 19 (2014), 1-25.  doi: 10.1214/EJP.v19-3058.  Google Scholar

[24]

E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with Caputo time derivative, J. Differential Equations, 262 (2017), 6018-6046.  doi: 10.1016/j.jde.2017.02.024.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards Applied Mathematics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.  Google Scholar

[2]

Y. Achdou, G. Barles, H. Ishii and G. L. Litvinov, Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, volume 2074 of Lecture Notes in Mathematics, Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2013. Lecture Notes from the CIME Summer School held in Cetraro, August 29–September 3, 2011, Edited by Paola Loreti and Nicoletta Anna Tchou, Fondazione CIME/CIME Foundation Subseries. doi: 10.1007/978-3-642-36433-4.  Google Scholar

[3]

M AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[4]

G. Barles and P. E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31 (2000), 925-939.  doi: 10.1137/S0036141099350869.  Google Scholar

[5]

G. BarlesE. Chasseigne and C. Imbert, Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations, J. Eur. Math. Soc. (JEMS), 13 (2011), 1-26.  doi: 10.4171/JEMS/242.  Google Scholar

[6]

G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567-585.  doi: 10.1016/j.anihpc.2007.02.007.  Google Scholar

[7]

G. BarlesH. Ishii and H. Mitake, A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations, Bull. Math. Sci., 3 (2013), 363-388.  doi: 10.1007/s13373-013-0036-0.  Google Scholar

[8]

F. CamilliR. De Maio and E. Lacomini, A Hopf-Lax formula for Hamilton-Jacobi equations with Caputo time derivative, J. Math. Anal. Appl., 477 (2019), 1019-1032.  doi: 10.1016/j.jmaa.2019.04.069.  Google Scholar

[9]

A. Davini and A. Siconolfi, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38 (2006), 478-502.  doi: 10.1137/050621955.  Google Scholar

[10]

K. Diethelm, The Analysis of Fractional Differential Equations, volume 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. Springer-Verlag, New York, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[11]

K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990.  Google Scholar

[12]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.  doi: 10.1016/S0764-4442(98)80144-4.  Google Scholar

[13]

A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.  doi: 10.1007/s00222-003-0323-6.  Google Scholar

[14]

A. Fathi and A. Siconolfi, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians, Calc. Var. Partial Differential Equations, 22 (2005), 185-228.  doi: 10.1007/s00526-004-0271-z.  Google Scholar

[15]

Y. FengL. LiJ. G. Liu and X. Xu, Continuous and discrete one dimensional autonomous fractional ODEs, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3109-3135.  doi: 10.3934/dcdsb.2017210.  Google Scholar

[16]

Y. Giga and T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo's time fractional derivative, Comm. Partial Differential Equations, 42 (2017), 1088-1120.  doi: 10.1080/03605302.2017.1324880.  Google Scholar

[17]

R. Gorenflo, A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[18]

H. Ishii, Asymptotic solutions of Hamilton-Jacobi equations for large time and related topics, In ICIAM 07—6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zürich, (2009), 193–217.  Google Scholar

[19]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, volume 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[20]

P.-L. Lions, B. Papanicolaou and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi Equations, Unpublished, 1986. Google Scholar

[21]

G. Namah and J.-M. Roquejoffre, Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations, 24 (1999), 883-893.  doi: 10.1080/03605309908821451.  Google Scholar

[22]

T. Namba, On existence and uniqueness of viscosity solutions for second order fully nonlinear PDEs with Caputo time fractional derivatives, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 23, 39 pp. doi: 10.1007/s00030-018-0513-y.  Google Scholar

[23]

T. Simon, Comparing Fréchet and positive stable laws, Electron. J. Probab., 19 (2014), 1-25.  doi: 10.1214/EJP.v19-3058.  Google Scholar

[24]

E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with Caputo time derivative, J. Differential Equations, 262 (2017), 6018-6046.  doi: 10.1016/j.jde.2017.02.024.  Google Scholar

Figure 1.  Behavior of $ f = f_1f_2 $
[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[3]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[7]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[8]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[9]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[11]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[12]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[13]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[14]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[15]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[17]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[19]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[20]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

2019 Impact Factor: 1.338

Article outline

Figures and Tables

[Back to Top]