doi: 10.3934/dcds.2021009

On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions

1. 

Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

2. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, CZ-115 67 Praha 1, Czech Republic, Institute of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

3. 

IMATH, EA 2134, Université de Toulon, BP 20132, 83957 La Garde, France

* Corresponding author: Jan Březina

Received  May 2020 Revised  October 2020 Published  January 2021

Fund Project: Jan Březina and Eduard Feireisl, The work of E.F. was partially supported by the Czech Sciences Foundation (GAČR), Grant Agreement 18-05974S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.
Antonín Novotný, The work of A.N. was supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2019H1D3A2A01101128).

We consider the barotropic Navier–Stokes system describing the motion of a compressible Newtonian fluid in a bounded domain with in and out flux boundary conditions. We show that if the boundary velocity coincides with that of a rigid motion, all solutions converge to an equilibrium state for large times.

Citation: Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2021009
References:
[1]

G. Avalos and P. G. Geredeli, Exponential stability of a nondissipative, compressible flow-structure PDE model, J. Evol. Equ., 20 (2020), 1-38.  doi: 10.1007/s00028-019-00513-9.  Google Scholar

[2]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-outflow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.  doi: 10.1137/17M115089X.  Google Scholar

[3]

H. J. ChoeA. Novotný and M. Yang, Compressible Navier-Stokes system with hard sphere pressure law and general inflow-outflow boundary conditions, J. Differential Equations, 266 (2019), 3066-3099.  doi: 10.1016/j.jde.2018.08.049.  Google Scholar

[4]

E. Feireisl and H. Petzeltová, On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow, Manuscr. Math., 97 (1998), 109-116.  doi: 10.1007/s002290050089.  Google Scholar

[5]

E. Feireisl and H. Petzeltová, Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow, Arch. Rational Mech. Anal., 150 (1999), 77-96.  doi: 10.1007/s002050050181.  Google Scholar

[6]

E. Feireisl and D. Pražák, Asymptotic Behavior of Dynamical Systems in Fluid Mechanics, AIMS, Springfield, 2010. Google Scholar

[7]

P. G. Geredeli, A time domain approach for the exponential stability of a linearized compressible flow–structure pde system, Math. Meth. Appl. Sci., 2020. Early view. Google Scholar

[8]

V. Girinon, Navier-Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain, J. Math. Fluid Mech., 13 (2011), 309-339.  doi: 10.1007/s00021-009-0018-x.  Google Scholar

[9]

Y.-S. Kwon and A. Novotný, Dissipative solutions to compressible Navier–Stokes equations with general inflow-outflow data: Existence, stability and weak strong uniqueness, J. Math. Fluid Mech., 2021 (in press). arXiv: 1905.02667. Google Scholar

[10]

B. Melinand and K. Zumbrun, Existence and stability of steady compressible Navier-Stokes solutions on a finite interval with noncharacteristic boundary conditions, Phys. D, 394 (2019), 16-25.  doi: 10.1016/j.physd.2019.01.006.  Google Scholar

[11]

A. Novotný and I. Straškraba, Stabilization of weak solutions to compressible Navier-Stokes equations, J. Math. Kyoto Univ., 40 (2000), 217-245.  doi: 10.1215/kjm/1250517713.  Google Scholar

[12]

A. Novotný and I. Straškraba, Convergence to equilibria for compressible Navier-Stokes equations with large data, Annali Mat. Pura Appl., 179 (2001), 263-287.  doi: 10.1007/BF02505958.  Google Scholar

[13]

Y. Shibata and K. Tanaka, Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid, Comput. Math. Appl., 53 (2007), 605-623.  doi: 10.1016/j.camwa.2006.02.030.  Google Scholar

[14]

S. UkaiT. Yang and H. Zhao, Convergence rate for the compressible Navier-Stokes equations with external force, J. Hyperbolic Differ. Equ., 3 (2006), 561-574.  doi: 10.1142/S0219891606000902.  Google Scholar

show all references

References:
[1]

G. Avalos and P. G. Geredeli, Exponential stability of a nondissipative, compressible flow-structure PDE model, J. Evol. Equ., 20 (2020), 1-38.  doi: 10.1007/s00028-019-00513-9.  Google Scholar

[2]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-outflow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.  doi: 10.1137/17M115089X.  Google Scholar

[3]

H. J. ChoeA. Novotný and M. Yang, Compressible Navier-Stokes system with hard sphere pressure law and general inflow-outflow boundary conditions, J. Differential Equations, 266 (2019), 3066-3099.  doi: 10.1016/j.jde.2018.08.049.  Google Scholar

[4]

E. Feireisl and H. Petzeltová, On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow, Manuscr. Math., 97 (1998), 109-116.  doi: 10.1007/s002290050089.  Google Scholar

[5]

E. Feireisl and H. Petzeltová, Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow, Arch. Rational Mech. Anal., 150 (1999), 77-96.  doi: 10.1007/s002050050181.  Google Scholar

[6]

E. Feireisl and D. Pražák, Asymptotic Behavior of Dynamical Systems in Fluid Mechanics, AIMS, Springfield, 2010. Google Scholar

[7]

P. G. Geredeli, A time domain approach for the exponential stability of a linearized compressible flow–structure pde system, Math. Meth. Appl. Sci., 2020. Early view. Google Scholar

[8]

V. Girinon, Navier-Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain, J. Math. Fluid Mech., 13 (2011), 309-339.  doi: 10.1007/s00021-009-0018-x.  Google Scholar

[9]

Y.-S. Kwon and A. Novotný, Dissipative solutions to compressible Navier–Stokes equations with general inflow-outflow data: Existence, stability and weak strong uniqueness, J. Math. Fluid Mech., 2021 (in press). arXiv: 1905.02667. Google Scholar

[10]

B. Melinand and K. Zumbrun, Existence and stability of steady compressible Navier-Stokes solutions on a finite interval with noncharacteristic boundary conditions, Phys. D, 394 (2019), 16-25.  doi: 10.1016/j.physd.2019.01.006.  Google Scholar

[11]

A. Novotný and I. Straškraba, Stabilization of weak solutions to compressible Navier-Stokes equations, J. Math. Kyoto Univ., 40 (2000), 217-245.  doi: 10.1215/kjm/1250517713.  Google Scholar

[12]

A. Novotný and I. Straškraba, Convergence to equilibria for compressible Navier-Stokes equations with large data, Annali Mat. Pura Appl., 179 (2001), 263-287.  doi: 10.1007/BF02505958.  Google Scholar

[13]

Y. Shibata and K. Tanaka, Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid, Comput. Math. Appl., 53 (2007), 605-623.  doi: 10.1016/j.camwa.2006.02.030.  Google Scholar

[14]

S. UkaiT. Yang and H. Zhao, Convergence rate for the compressible Navier-Stokes equations with external force, J. Hyperbolic Differ. Equ., 3 (2006), 561-574.  doi: 10.1142/S0219891606000902.  Google Scholar

[1]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[2]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[6]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[7]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[8]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[9]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[10]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[11]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[12]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[13]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[14]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[15]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[16]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[17]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[18]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[19]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[20]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

2019 Impact Factor: 1.338

Article outline

[Back to Top]