
-
Previous Article
Another point of view on Kusuoka's measure
- DCDS Home
- This Issue
-
Next Article
Extensions of expansive dynamical systems
Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions
School of Fundamental Sciences, Massey University, Palmerston North, New Zealand |
We consider a homoclinic orbit to a saddle fixed point of an arbitrary $ C^\infty $ map $ f $ on $ \mathbb{R}^2 $ and study the phenomenon that $ f $ has an infinite family of asymptotically stable, single-round periodic solutions. From classical theory this requires $ f $ to have a homoclinic tangency. We show it is also necessary for $ f $ to satisfy a 'global resonance' condition and for the eigenvalues associated with the fixed point, $ \lambda $ and $ \sigma $, to satisfy $ |\lambda \sigma| = 1 $. The phenomenon is codimension-three in the case $ \lambda \sigma = -1 $, but codimension-four in the case $ \lambda \sigma = 1 $ because here the coefficients of the leading-order resonance terms associated with $ f $ at the fixed point must add to zero. We also identify conditions sufficient for the phenomenon to occur, illustrate the results for an abstract family of maps, and show numerically computed basins of attraction.
References:
[1] |
C. C. Canavier, D. A. Baxter, J. W. Clark and J. H. Byrne,
Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity, J. Neurophysiol, 69 (1993), 2252-2257.
doi: 10.1152/jn.1993.69.6.2252. |
[2] |
N. G. de Brujin, Asymptotic Methods in Analysis, Dover, New York, 1981. |
[3] |
A. Delshams, M. Gonchenko and S. Gonchenko,
On dynamics and bifurcations of area-preserving maps with homoclinic tangencies, Nonlinearity, 28 (2015), 3027-3071.
doi: 10.1088/0951-7715/28/9/3027. |
[4] |
A. Delshams, M. Gonchenko and S. V. Gonchenko,
On bifurcations of area-preserving and non-orientable maps with quadratic homoclinic tangencies, Regul. Chaotic Dyn., 19 (2014), 702-717.
doi: 10.1134/S1560354714060082. |
[5] |
S. N. Elaydi, Discrete Chaos with Applications in Science and Engineering, Chapman and Hall., Boca Raton, FL, 2008. |
[6] |
U. Feudel,
Complex dynamics in multistable systems, Int. J. Bifurcation Chaos, 18 (2008), 1607-1626.
doi: 10.1142/S0218127408021233. |
[7] |
J. A. C. Gallas, Dissecting shrimps: Results for some one-dimensional physical systems, Physica A, 202 (1994), 196-223. Google Scholar |
[8] |
J. M. Gambaudo and C. Tresser,
Simple models for bifurcations creating horseshoes, J. Stat. Phys., 32 (1983), 455-476.
doi: 10.1007/BF01008950. |
[9] |
N. K. Gavrilov and L. P. Silnikov,
On three dimensional dynamical systems close to systems with structurally unstable homoclinic curve. I, Mat. Sb. (N.S.), 88 (1972), 475-492.
|
[10] |
N. K. Gavrilov and L. P. Silnikov,
On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II, Mat. Sb. (N.S.), 90 (1973), 139-156.
|
[11] |
M. S. Gonchenko and S. V. Gonchenko,
On cascades of elliptic periodic points in two-dimensional symplectic maps with homoclinic tangencies, Regul. Chaotic Dyns., 14 (2009), 116-136.
doi: 10.1134/S1560354709010080. |
[12] |
S. V. Gonchenko and L. P. Shil'nikov,
Arithmetic properties of topological invariants of systems with nonstructurally-stable homoclinic trajectories, Ukr. Math. J., 39 (1987), 15-21.
doi: 10.1007/BF01056417. |
[13] |
S. V. Gonchenko and L. P. Shilnikov,
On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points, J. Math. Sci. (N. Y.), 128 (2005), 2767-2773.
doi: 10.1007/s10958-005-0228-6. |
[14] |
S. V. Gonchenko, L. P. Shil'nikov and D. V. Turaev,
Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos, 6 (1996), 15-31.
doi: 10.1063/1.166154. |
[15] |
V. S. Gonchenko, Yu. A. Kuznetsov and H. G. E. Meijer,
Generalized Hénon map and bifurcations of homoclinic tangencies, SIAM J. Appl. Dyn. Syst., 4 (2005), 407-436.
doi: 10.1137/04060487X. |
[16] |
P. Hirschberg and C. R. Laing,
Successive homoclinic tangencies to a limit cycle, Physica D, 89 (1995), 1-14.
doi: 10.1016/0167-2789(95)00211-1. |
[17] |
V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Marcel Dekker, Inc., New York, 2002.
doi: 10.1201/9780203910290. |
[18] |
C. Mira, L. Gardini, A. Barugola and J. C. Cathala, Chaotic Dynamics in Two Dimensional Noninvertible Maps, World Scientific, 1996.
doi: 10.1142/9789812798732. |
[19] |
S. E. Newhouse,
Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18.
doi: 10.1016/0040-9383(74)90034-2. |
[20] |
C. N. Ngonghala, U. Feudel and K. Showalter, Extreme multistability in a chemical model system, Phys. Rev. E, 83 (2011), 056206.
doi: 10.1103/PhysRevE.83.056206. |
[21] |
J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, New York, 1993.
![]() |
[22] |
S. Rahmstorf and J. Willebrand,
The role of temperature feedback in stabilizing the thermohaline circulation, J. Phys. Oceanogr, 25 (1995), 787-805.
doi: 10.1175/1520-0485(1995)025<0787:TROTFI>2.0.CO;2. |
[23] |
R. C. Robinson, An Introduction to Dynamical Systems. Continuous and Discrete, Prentice Hall, Upper Saddle River, NJ, 2004. |
[24] |
L. P. Shil'nikov, A. L. Shil'nikov, D. V. Turaev and L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part I, volume 4, World Scientific Singapore, 1998.
doi: 10.1142/9789812798596. |
[25] |
D. J. W. Simpson, Scaling laws for large numbers of coexisting attracting periodic solutions in the border-collision normal form, Int. J. Bifurcation Chaos, 24 (2014), 1450118, 28pp.
doi: 10.1142/S0218127414501181. |
[26] |
D. J. W. Simpson, Sequences of periodic solutions and infinitely many coexisting attractors in the border-collision normal form, Int. J. Bifurcation Chaos, 24 (2014), 1430018, 18pp.
doi: 10.1142/S0218127414300183. |
[27] |
D. J. W. Simpson, Unfolding codimension-two subsumed homoclinic connections in two-dimensional piecewise-linear maps, Int. J. Bifurcation Chaos, 30 (2020), 203006, 12pp.
doi: 10.1142/S0218127420300062. |
[28] |
D. J. W. Simpson and C. P. Tuffley, Subsumed homoclinic connections and infinitely many coexisting attractors in piecewise-linear maps, Int. J. Bifurcation Chaos, 27 (2017), 1730010, 20 pp.
doi: 10.1142/S0218127417300105. |
[29] |
S. Sternberg,
On the structure of local homeomorphisms of Euclidean $n$-space, II, Amer. J. Math., 80 (1958), 623-631.
doi: 10.2307/2372774. |
show all references
References:
[1] |
C. C. Canavier, D. A. Baxter, J. W. Clark and J. H. Byrne,
Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity, J. Neurophysiol, 69 (1993), 2252-2257.
doi: 10.1152/jn.1993.69.6.2252. |
[2] |
N. G. de Brujin, Asymptotic Methods in Analysis, Dover, New York, 1981. |
[3] |
A. Delshams, M. Gonchenko and S. Gonchenko,
On dynamics and bifurcations of area-preserving maps with homoclinic tangencies, Nonlinearity, 28 (2015), 3027-3071.
doi: 10.1088/0951-7715/28/9/3027. |
[4] |
A. Delshams, M. Gonchenko and S. V. Gonchenko,
On bifurcations of area-preserving and non-orientable maps with quadratic homoclinic tangencies, Regul. Chaotic Dyn., 19 (2014), 702-717.
doi: 10.1134/S1560354714060082. |
[5] |
S. N. Elaydi, Discrete Chaos with Applications in Science and Engineering, Chapman and Hall., Boca Raton, FL, 2008. |
[6] |
U. Feudel,
Complex dynamics in multistable systems, Int. J. Bifurcation Chaos, 18 (2008), 1607-1626.
doi: 10.1142/S0218127408021233. |
[7] |
J. A. C. Gallas, Dissecting shrimps: Results for some one-dimensional physical systems, Physica A, 202 (1994), 196-223. Google Scholar |
[8] |
J. M. Gambaudo and C. Tresser,
Simple models for bifurcations creating horseshoes, J. Stat. Phys., 32 (1983), 455-476.
doi: 10.1007/BF01008950. |
[9] |
N. K. Gavrilov and L. P. Silnikov,
On three dimensional dynamical systems close to systems with structurally unstable homoclinic curve. I, Mat. Sb. (N.S.), 88 (1972), 475-492.
|
[10] |
N. K. Gavrilov and L. P. Silnikov,
On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II, Mat. Sb. (N.S.), 90 (1973), 139-156.
|
[11] |
M. S. Gonchenko and S. V. Gonchenko,
On cascades of elliptic periodic points in two-dimensional symplectic maps with homoclinic tangencies, Regul. Chaotic Dyns., 14 (2009), 116-136.
doi: 10.1134/S1560354709010080. |
[12] |
S. V. Gonchenko and L. P. Shil'nikov,
Arithmetic properties of topological invariants of systems with nonstructurally-stable homoclinic trajectories, Ukr. Math. J., 39 (1987), 15-21.
doi: 10.1007/BF01056417. |
[13] |
S. V. Gonchenko and L. P. Shilnikov,
On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points, J. Math. Sci. (N. Y.), 128 (2005), 2767-2773.
doi: 10.1007/s10958-005-0228-6. |
[14] |
S. V. Gonchenko, L. P. Shil'nikov and D. V. Turaev,
Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos, 6 (1996), 15-31.
doi: 10.1063/1.166154. |
[15] |
V. S. Gonchenko, Yu. A. Kuznetsov and H. G. E. Meijer,
Generalized Hénon map and bifurcations of homoclinic tangencies, SIAM J. Appl. Dyn. Syst., 4 (2005), 407-436.
doi: 10.1137/04060487X. |
[16] |
P. Hirschberg and C. R. Laing,
Successive homoclinic tangencies to a limit cycle, Physica D, 89 (1995), 1-14.
doi: 10.1016/0167-2789(95)00211-1. |
[17] |
V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Marcel Dekker, Inc., New York, 2002.
doi: 10.1201/9780203910290. |
[18] |
C. Mira, L. Gardini, A. Barugola and J. C. Cathala, Chaotic Dynamics in Two Dimensional Noninvertible Maps, World Scientific, 1996.
doi: 10.1142/9789812798732. |
[19] |
S. E. Newhouse,
Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18.
doi: 10.1016/0040-9383(74)90034-2. |
[20] |
C. N. Ngonghala, U. Feudel and K. Showalter, Extreme multistability in a chemical model system, Phys. Rev. E, 83 (2011), 056206.
doi: 10.1103/PhysRevE.83.056206. |
[21] |
J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, New York, 1993.
![]() |
[22] |
S. Rahmstorf and J. Willebrand,
The role of temperature feedback in stabilizing the thermohaline circulation, J. Phys. Oceanogr, 25 (1995), 787-805.
doi: 10.1175/1520-0485(1995)025<0787:TROTFI>2.0.CO;2. |
[23] |
R. C. Robinson, An Introduction to Dynamical Systems. Continuous and Discrete, Prentice Hall, Upper Saddle River, NJ, 2004. |
[24] |
L. P. Shil'nikov, A. L. Shil'nikov, D. V. Turaev and L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part I, volume 4, World Scientific Singapore, 1998.
doi: 10.1142/9789812798596. |
[25] |
D. J. W. Simpson, Scaling laws for large numbers of coexisting attracting periodic solutions in the border-collision normal form, Int. J. Bifurcation Chaos, 24 (2014), 1450118, 28pp.
doi: 10.1142/S0218127414501181. |
[26] |
D. J. W. Simpson, Sequences of periodic solutions and infinitely many coexisting attractors in the border-collision normal form, Int. J. Bifurcation Chaos, 24 (2014), 1430018, 18pp.
doi: 10.1142/S0218127414300183. |
[27] |
D. J. W. Simpson, Unfolding codimension-two subsumed homoclinic connections in two-dimensional piecewise-linear maps, Int. J. Bifurcation Chaos, 30 (2020), 203006, 12pp.
doi: 10.1142/S0218127420300062. |
[28] |
D. J. W. Simpson and C. P. Tuffley, Subsumed homoclinic connections and infinitely many coexisting attractors in piecewise-linear maps, Int. J. Bifurcation Chaos, 27 (2017), 1730010, 20 pp.
doi: 10.1142/S0218127417300105. |
[29] |
S. Sternberg,
On the structure of local homeomorphisms of Euclidean $n$-space, II, Amer. J. Math., 80 (1958), 623-631.
doi: 10.2307/2372774. |








[1] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[2] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[3] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[4] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[5] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[6] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[7] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[8] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[9] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[10] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[11] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[12] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[13] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[14] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[15] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[16] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[17] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[18] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[19] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[20] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
2019 Impact Factor: 1.338
Tools
Article outline
Figures and Tables
[Back to Top]