• Previous Article
    A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo"
  • DCDS Home
  • This Issue
  • Next Article
    Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions
August  2021, 41(8): 3651-3682. doi: 10.3934/dcds.2021011

The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function

1. 

School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, China

2. 

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

3. 

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

* Corresponding author: Tsung-fang Wu

Received  August 2019 Revised  November 2020 Published  August 2021 Early access  January 2021

Fund Project: J. Sun is supported by the National Natural Science Foundation of China (Grant No. 11671236). T.F. Wu is supported in part by the Ministry of Science and Technology, Taiwan (Grant 108-2115-M-390-007-MY2)

In this paper, we study the multiplicity of two spikes nodal solutions for a nonautonomous Schrödinger–Poisson system with the nonlinearity $ f(x)\vert u\vert ^{p-2}u(2<p<6) $ in $ \mathbb{R}^{3} $. By assuming that the weight function $ f\in C(\mathbb{R}^{3},\mathbb{R}^{+}) $ has $ m $ maximum points in $ \mathbb{R}^{3} $, we conclude that such system admits $ m^{2} $ distinct nodal solutions, each of which has exactly two nodal domains. The proof is based on a natural constraint approach developed by us as well as the generalized barycenter map.

Citation: Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011
References:
[1]

C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153-1166.  doi: 10.1007/s00033-013-0376-3.

[2]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.

[3]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.

[4]

A. Bahri and H. Berestycki, Points critiques de perturbations de fonctionnelles paries et applications, C. R. Acad. Sci. Paris Sér A-B, 291 (1980), A189–A192.

[5]

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Lineairé, 22 (2005), 259-281.  doi: 10.1016/j.anihpc.2004.07.005.

[6]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.

[7]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.  doi: 10.1142/S0129055X02001168.

[8]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.

[9]

D. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^{N}$, Ann. Inst. H. Poincaré Anal. Non Lineairé, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.

[10]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations, 17 (2003), 257-281.  doi: 10.1007/s00526-002-0169-6.

[11]

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.

[12]

C. Y. ChenY. C. Kuo and T. F. Wu, Existence and multiplicity of positive solutions for the nonlinear Schrödinger-Poisson equations, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 745-764.  doi: 10.1017/S0308210511000692.

[13]

S. Chen and X. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^{3}, $, Z. Angew. Math. Phys., 67 (2016), Art. 102, 18 pp. doi: 10.1007/s00033-016-0695-2.

[14]

M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric doamin, Calc. Var. Partial Differential Equations, 21 (2004), 1-14.  doi: 10.1007/s00526-003-0241-x.

[15]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein–Gordon–Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.  doi: 10.1515/ans-2004-0305.

[16]

P. Drábek and S. I. Pohozaev, Positive solutions for the $p$-Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.  doi: 10.1017/S0308210500023787.

[17]

I. Ianni, Sign-changing radial solutions for the Schrödinger–Poisson–Slater problem, Topol. Methods Nonlinear Anal., 41 (2013), 365-385. 

[18]

I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger–Poisson–Slater problem, Commun. Contemp. Math., 14 (2012), 1250003, 22pp. doi: 10.1142/S0219199712500034.

[19]

S. Kim and J. Seok, On nodal solutions of the nonlinear Schrödinger–Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041, 16pp. doi: 10.1142/S0219199712500411.

[20]

M. K. Kwong, Uniqueness of positive solution of $\Delta u-u+u^{p} = 0$ in $\mathbb{R}^{3}, $, Arch. Ration. Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[21]

Y. Li, F. Li and J. Shi, Existence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 134, 17 pp. doi: 10.1007/s00526-017-1229-2.

[22]

Z. LiangJ. Xu and X. Zhu, Revisit to sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 435 (2016), 783-799.  doi: 10.1016/j.jmaa.2015.10.076.

[23]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, AMS, 2001. doi: 10.1090/gsm/014.

[24]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.

[25]

C. LiuH. Wang and T. F. Wu, Multiplicity of 2-nodal solutions for semilinear elliptic problems in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 348 (2008), 169-179.  doi: 10.1016/j.jmaa.2008.06.042.

[26]

Z. LiuZ. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system, Ann. Mat. Pura Appl, 195 (2016), 775-794.  doi: 10.1007/s10231-015-0489-8.

[27]

S. I. Pohozaev, On an approach to nonlinear equations, Dokl. Akad. Nauk SSSR, 247 (1979), 1327-1331. 

[28]

D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.

[29]

W. Shuai and Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, Z. Angew. Math. Phys., 66 (2015), 3267-3282.  doi: 10.1007/s00033-015-0571-5.

[30]

J. SunT. F. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system, J. Differential Equations, 260 (2016), 586-627.  doi: 10.1016/j.jde.2015.09.002.

[31]

J. SunT. F. Wu and Z. Feng, Non-autonomous Schrödinger–Poisson problems in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 38 (2018), 1889-1933.  doi: 10.3934/dcds.2018077.

[32]

J. Sun and T. F. Wu, Bound state nodal solutions for the non-autonomous Schrödinger–Poisson system in $\mathbb{R}^{3}$, J. Differential Equations, 268 (2020), 7121-7163.  doi: 10.1016/j.jde.2019.11.070.

[33]

G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281-304.  doi: 10.1016/S0294-1449(16)30238-4.

[34]

H. C. Wang and T. F. Wu, Symmetry breaking in a bounded symmetry domain, Nonlinear Differ. Equ. Appl., 11 (2004), 361-377.  doi: 10.1007/s00030-004-2008-2.

[35]

Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, Calc. Var. Partial Differential Equations, 52 (2015), 927-943.  doi: 10.1007/s00526-014-0738-5.

[36]

E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Fixed-point Theorems, Springer, New York, 1986.

[37]

L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger–Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.

show all references

References:
[1]

C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153-1166.  doi: 10.1007/s00033-013-0376-3.

[2]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.

[3]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.

[4]

A. Bahri and H. Berestycki, Points critiques de perturbations de fonctionnelles paries et applications, C. R. Acad. Sci. Paris Sér A-B, 291 (1980), A189–A192.

[5]

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Lineairé, 22 (2005), 259-281.  doi: 10.1016/j.anihpc.2004.07.005.

[6]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.

[7]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.  doi: 10.1142/S0129055X02001168.

[8]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.

[9]

D. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^{N}$, Ann. Inst. H. Poincaré Anal. Non Lineairé, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.

[10]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations, 17 (2003), 257-281.  doi: 10.1007/s00526-002-0169-6.

[11]

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.

[12]

C. Y. ChenY. C. Kuo and T. F. Wu, Existence and multiplicity of positive solutions for the nonlinear Schrödinger-Poisson equations, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 745-764.  doi: 10.1017/S0308210511000692.

[13]

S. Chen and X. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^{3}, $, Z. Angew. Math. Phys., 67 (2016), Art. 102, 18 pp. doi: 10.1007/s00033-016-0695-2.

[14]

M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric doamin, Calc. Var. Partial Differential Equations, 21 (2004), 1-14.  doi: 10.1007/s00526-003-0241-x.

[15]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein–Gordon–Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.  doi: 10.1515/ans-2004-0305.

[16]

P. Drábek and S. I. Pohozaev, Positive solutions for the $p$-Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.  doi: 10.1017/S0308210500023787.

[17]

I. Ianni, Sign-changing radial solutions for the Schrödinger–Poisson–Slater problem, Topol. Methods Nonlinear Anal., 41 (2013), 365-385. 

[18]

I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger–Poisson–Slater problem, Commun. Contemp. Math., 14 (2012), 1250003, 22pp. doi: 10.1142/S0219199712500034.

[19]

S. Kim and J. Seok, On nodal solutions of the nonlinear Schrödinger–Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041, 16pp. doi: 10.1142/S0219199712500411.

[20]

M. K. Kwong, Uniqueness of positive solution of $\Delta u-u+u^{p} = 0$ in $\mathbb{R}^{3}, $, Arch. Ration. Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[21]

Y. Li, F. Li and J. Shi, Existence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 134, 17 pp. doi: 10.1007/s00526-017-1229-2.

[22]

Z. LiangJ. Xu and X. Zhu, Revisit to sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 435 (2016), 783-799.  doi: 10.1016/j.jmaa.2015.10.076.

[23]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, AMS, 2001. doi: 10.1090/gsm/014.

[24]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.

[25]

C. LiuH. Wang and T. F. Wu, Multiplicity of 2-nodal solutions for semilinear elliptic problems in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 348 (2008), 169-179.  doi: 10.1016/j.jmaa.2008.06.042.

[26]

Z. LiuZ. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system, Ann. Mat. Pura Appl, 195 (2016), 775-794.  doi: 10.1007/s10231-015-0489-8.

[27]

S. I. Pohozaev, On an approach to nonlinear equations, Dokl. Akad. Nauk SSSR, 247 (1979), 1327-1331. 

[28]

D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.

[29]

W. Shuai and Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, Z. Angew. Math. Phys., 66 (2015), 3267-3282.  doi: 10.1007/s00033-015-0571-5.

[30]

J. SunT. F. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system, J. Differential Equations, 260 (2016), 586-627.  doi: 10.1016/j.jde.2015.09.002.

[31]

J. SunT. F. Wu and Z. Feng, Non-autonomous Schrödinger–Poisson problems in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 38 (2018), 1889-1933.  doi: 10.3934/dcds.2018077.

[32]

J. Sun and T. F. Wu, Bound state nodal solutions for the non-autonomous Schrödinger–Poisson system in $\mathbb{R}^{3}$, J. Differential Equations, 268 (2020), 7121-7163.  doi: 10.1016/j.jde.2019.11.070.

[33]

G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281-304.  doi: 10.1016/S0294-1449(16)30238-4.

[34]

H. C. Wang and T. F. Wu, Symmetry breaking in a bounded symmetry domain, Nonlinear Differ. Equ. Appl., 11 (2004), 361-377.  doi: 10.1007/s00030-004-2008-2.

[35]

Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, Calc. Var. Partial Differential Equations, 52 (2015), 927-943.  doi: 10.1007/s00526-014-0738-5.

[36]

E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Fixed-point Theorems, Springer, New York, 1986.

[37]

L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger–Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.

[1]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[2]

Kaimin Teng, Xian Wu. Concentration of bound states for fractional Schrödinger-Poisson system via penalization methods. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1157-1187. doi: 10.3934/cpaa.2022014

[3]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1737-1754. doi: 10.3934/cpaa.2021039

[4]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[5]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[6]

Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266

[7]

Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241

[8]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038

[9]

Rong Cheng, Jun Wang. Existence of ground states for Schrödinger-Poisson system with nonperiodic potentials. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021317

[10]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure and Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[11]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[12]

Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058

[13]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[14]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic and Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

[15]

Amna Dabaa, O. Goubet. Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1743-1756. doi: 10.3934/cpaa.2016011

[16]

Lirong Huang, Jianqing Chen. Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28 (1) : 383-404. doi: 10.3934/era.2020022

[17]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[18]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[19]

Xia Sun, Kaimin Teng. Positive bound states for fractional Schrödinger-Poisson system with critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3735-3768. doi: 10.3934/cpaa.2020165

[20]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (321)
  • HTML views (202)
  • Cited by (0)

Other articles
by authors

[Back to Top]