doi: 10.3934/dcds.2021011

The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function

1. 

School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, China

2. 

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

3. 

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

* Corresponding author: Tsung-fang Wu

Received  August 2019 Revised  November 2020 Published  January 2021

Fund Project: J. Sun is supported by the National Natural Science Foundation of China (Grant No. 11671236). T.F. Wu is supported in part by the Ministry of Science and Technology, Taiwan (Grant 108-2115-M-390-007-MY2)

In this paper, we study the multiplicity of two spikes nodal solutions for a nonautonomous Schrödinger–Poisson system with the nonlinearity $ f(x)\vert u\vert ^{p-2}u(2<p<6) $ in $ \mathbb{R}^{3} $. By assuming that the weight function $ f\in C(\mathbb{R}^{3},\mathbb{R}^{+}) $ has $ m $ maximum points in $ \mathbb{R}^{3} $, we conclude that such system admits $ m^{2} $ distinct nodal solutions, each of which has exactly two nodal domains. The proof is based on a natural constraint approach developed by us as well as the generalized barycenter map.

Citation: Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2021011
References:
[1]

C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153-1166.  doi: 10.1007/s00033-013-0376-3.  Google Scholar

[2]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.  Google Scholar

[3]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[4]

A. Bahri and H. Berestycki, Points critiques de perturbations de fonctionnelles paries et applications, C. R. Acad. Sci. Paris Sér A-B, 291 (1980), A189–A192.  Google Scholar

[5]

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Lineairé, 22 (2005), 259-281.  doi: 10.1016/j.anihpc.2004.07.005.  Google Scholar

[6]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.  Google Scholar

[7]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.  doi: 10.1142/S0129055X02001168.  Google Scholar

[8]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[9]

D. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^{N}$, Ann. Inst. H. Poincaré Anal. Non Lineairé, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.  Google Scholar

[10]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations, 17 (2003), 257-281.  doi: 10.1007/s00526-002-0169-6.  Google Scholar

[11]

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.  Google Scholar

[12]

C. Y. ChenY. C. Kuo and T. F. Wu, Existence and multiplicity of positive solutions for the nonlinear Schrödinger-Poisson equations, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 745-764.  doi: 10.1017/S0308210511000692.  Google Scholar

[13]

S. Chen and X. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^{3}, $, Z. Angew. Math. Phys., 67 (2016), Art. 102, 18 pp. doi: 10.1007/s00033-016-0695-2.  Google Scholar

[14]

M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric doamin, Calc. Var. Partial Differential Equations, 21 (2004), 1-14.  doi: 10.1007/s00526-003-0241-x.  Google Scholar

[15]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein–Gordon–Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.  doi: 10.1515/ans-2004-0305.  Google Scholar

[16]

P. Drábek and S. I. Pohozaev, Positive solutions for the $p$-Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.  doi: 10.1017/S0308210500023787.  Google Scholar

[17]

I. Ianni, Sign-changing radial solutions for the Schrödinger–Poisson–Slater problem, Topol. Methods Nonlinear Anal., 41 (2013), 365-385.   Google Scholar

[18]

I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger–Poisson–Slater problem, Commun. Contemp. Math., 14 (2012), 1250003, 22pp. doi: 10.1142/S0219199712500034.  Google Scholar

[19]

S. Kim and J. Seok, On nodal solutions of the nonlinear Schrödinger–Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041, 16pp. doi: 10.1142/S0219199712500411.  Google Scholar

[20]

M. K. Kwong, Uniqueness of positive solution of $\Delta u-u+u^{p} = 0$ in $\mathbb{R}^{3}, $, Arch. Ration. Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[21]

Y. Li, F. Li and J. Shi, Existence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 134, 17 pp. doi: 10.1007/s00526-017-1229-2.  Google Scholar

[22]

Z. LiangJ. Xu and X. Zhu, Revisit to sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 435 (2016), 783-799.  doi: 10.1016/j.jmaa.2015.10.076.  Google Scholar

[23]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, AMS, 2001. doi: 10.1090/gsm/014.  Google Scholar

[24]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[25]

C. LiuH. Wang and T. F. Wu, Multiplicity of 2-nodal solutions for semilinear elliptic problems in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 348 (2008), 169-179.  doi: 10.1016/j.jmaa.2008.06.042.  Google Scholar

[26]

Z. LiuZ. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system, Ann. Mat. Pura Appl, 195 (2016), 775-794.  doi: 10.1007/s10231-015-0489-8.  Google Scholar

[27]

S. I. Pohozaev, On an approach to nonlinear equations, Dokl. Akad. Nauk SSSR, 247 (1979), 1327-1331.   Google Scholar

[28]

D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[29]

W. Shuai and Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, Z. Angew. Math. Phys., 66 (2015), 3267-3282.  doi: 10.1007/s00033-015-0571-5.  Google Scholar

[30]

J. SunT. F. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system, J. Differential Equations, 260 (2016), 586-627.  doi: 10.1016/j.jde.2015.09.002.  Google Scholar

[31]

J. SunT. F. Wu and Z. Feng, Non-autonomous Schrödinger–Poisson problems in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 38 (2018), 1889-1933.  doi: 10.3934/dcds.2018077.  Google Scholar

[32]

J. Sun and T. F. Wu, Bound state nodal solutions for the non-autonomous Schrödinger–Poisson system in $\mathbb{R}^{3}$, J. Differential Equations, 268 (2020), 7121-7163.  doi: 10.1016/j.jde.2019.11.070.  Google Scholar

[33]

G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281-304.  doi: 10.1016/S0294-1449(16)30238-4.  Google Scholar

[34]

H. C. Wang and T. F. Wu, Symmetry breaking in a bounded symmetry domain, Nonlinear Differ. Equ. Appl., 11 (2004), 361-377.  doi: 10.1007/s00030-004-2008-2.  Google Scholar

[35]

Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, Calc. Var. Partial Differential Equations, 52 (2015), 927-943.  doi: 10.1007/s00526-014-0738-5.  Google Scholar

[36]

E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Fixed-point Theorems, Springer, New York, 1986.  Google Scholar

[37]

L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger–Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar

show all references

References:
[1]

C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger–Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153-1166.  doi: 10.1007/s00033-013-0376-3.  Google Scholar

[2]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.  Google Scholar

[3]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[4]

A. Bahri and H. Berestycki, Points critiques de perturbations de fonctionnelles paries et applications, C. R. Acad. Sci. Paris Sér A-B, 291 (1980), A189–A192.  Google Scholar

[5]

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Lineairé, 22 (2005), 259-281.  doi: 10.1016/j.anihpc.2004.07.005.  Google Scholar

[6]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.  Google Scholar

[7]

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.  doi: 10.1142/S0129055X02001168.  Google Scholar

[8]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[9]

D. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^{N}$, Ann. Inst. H. Poincaré Anal. Non Lineairé, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.  Google Scholar

[10]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations, 17 (2003), 257-281.  doi: 10.1007/s00526-002-0169-6.  Google Scholar

[11]

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.  Google Scholar

[12]

C. Y. ChenY. C. Kuo and T. F. Wu, Existence and multiplicity of positive solutions for the nonlinear Schrödinger-Poisson equations, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 745-764.  doi: 10.1017/S0308210511000692.  Google Scholar

[13]

S. Chen and X. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $\mathbb{R}^{3}, $, Z. Angew. Math. Phys., 67 (2016), Art. 102, 18 pp. doi: 10.1007/s00033-016-0695-2.  Google Scholar

[14]

M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric doamin, Calc. Var. Partial Differential Equations, 21 (2004), 1-14.  doi: 10.1007/s00526-003-0241-x.  Google Scholar

[15]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein–Gordon–Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.  doi: 10.1515/ans-2004-0305.  Google Scholar

[16]

P. Drábek and S. I. Pohozaev, Positive solutions for the $p$-Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.  doi: 10.1017/S0308210500023787.  Google Scholar

[17]

I. Ianni, Sign-changing radial solutions for the Schrödinger–Poisson–Slater problem, Topol. Methods Nonlinear Anal., 41 (2013), 365-385.   Google Scholar

[18]

I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger–Poisson–Slater problem, Commun. Contemp. Math., 14 (2012), 1250003, 22pp. doi: 10.1142/S0219199712500034.  Google Scholar

[19]

S. Kim and J. Seok, On nodal solutions of the nonlinear Schrödinger–Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041, 16pp. doi: 10.1142/S0219199712500411.  Google Scholar

[20]

M. K. Kwong, Uniqueness of positive solution of $\Delta u-u+u^{p} = 0$ in $\mathbb{R}^{3}, $, Arch. Ration. Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[21]

Y. Li, F. Li and J. Shi, Existence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 134, 17 pp. doi: 10.1007/s00526-017-1229-2.  Google Scholar

[22]

Z. LiangJ. Xu and X. Zhu, Revisit to sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 435 (2016), 783-799.  doi: 10.1016/j.jmaa.2015.10.076.  Google Scholar

[23]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, AMS, 2001. doi: 10.1090/gsm/014.  Google Scholar

[24]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[25]

C. LiuH. Wang and T. F. Wu, Multiplicity of 2-nodal solutions for semilinear elliptic problems in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 348 (2008), 169-179.  doi: 10.1016/j.jmaa.2008.06.042.  Google Scholar

[26]

Z. LiuZ. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system, Ann. Mat. Pura Appl, 195 (2016), 775-794.  doi: 10.1007/s10231-015-0489-8.  Google Scholar

[27]

S. I. Pohozaev, On an approach to nonlinear equations, Dokl. Akad. Nauk SSSR, 247 (1979), 1327-1331.   Google Scholar

[28]

D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[29]

W. Shuai and Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, Z. Angew. Math. Phys., 66 (2015), 3267-3282.  doi: 10.1007/s00033-015-0571-5.  Google Scholar

[30]

J. SunT. F. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system, J. Differential Equations, 260 (2016), 586-627.  doi: 10.1016/j.jde.2015.09.002.  Google Scholar

[31]

J. SunT. F. Wu and Z. Feng, Non-autonomous Schrödinger–Poisson problems in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 38 (2018), 1889-1933.  doi: 10.3934/dcds.2018077.  Google Scholar

[32]

J. Sun and T. F. Wu, Bound state nodal solutions for the non-autonomous Schrödinger–Poisson system in $\mathbb{R}^{3}$, J. Differential Equations, 268 (2020), 7121-7163.  doi: 10.1016/j.jde.2019.11.070.  Google Scholar

[33]

G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281-304.  doi: 10.1016/S0294-1449(16)30238-4.  Google Scholar

[34]

H. C. Wang and T. F. Wu, Symmetry breaking in a bounded symmetry domain, Nonlinear Differ. Equ. Appl., 11 (2004), 361-377.  doi: 10.1007/s00030-004-2008-2.  Google Scholar

[35]

Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger–Poisson system in $\mathbb{R}^{3}$, Calc. Var. Partial Differential Equations, 52 (2015), 927-943.  doi: 10.1007/s00526-014-0738-5.  Google Scholar

[36]

E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Fixed-point Theorems, Springer, New York, 1986.  Google Scholar

[37]

L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger–Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar

[1]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[2]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[3]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[4]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[5]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[6]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[7]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[8]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[13]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[14]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[15]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[16]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[17]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[18]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[19]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.338

Article outline

[Back to Top]