• Previous Article
    Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations
  • DCDS Home
  • This Issue
  • Next Article
    Quantitative oppenheim conjecture for $ S $-arithmetic quadratic forms of rank $ 3 $ and $ 4 $
doi: 10.3934/dcds.2021012

A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo"

1. 

Dipartimento di Matematica e Geoscienze, Università di Trieste, P.le Europa 1, Trieste, Italy

2. 

Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Via delle Scienze 206, Udine, Italy

* Corresponding author: Alessandro Fonda

Received  November 2020 Published  January 2021

We prove the existence of bounded and periodic solutions for planar systems by introducing a notion of lower and upper solutions which generalizes the classical one for scalar second order equations. The proof relies on phase plane analysis; after suitably modifying the nonlinearities, the Ważewski theory provides a solution which remains bounded in the future. For the periodic problem, the Massera Theorem applies, yielding the existence result. We then show how our result generalizes some well known theorems on the existence of bounded and of periodic solutions. Finally, we provide some corollaries on the existence of almost periodic solutions for scalar second order equations.

Citation: Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2021012
References:
[1]

S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875.  doi: 10.1090/S0002-9947-1991-1010407-9.  Google Scholar

[2]

I. Barbălat, Applications du principe topologique de T. Ważewski aux équations différentielles du second ordre, Ann. Polon. Math., 5 (1958), 303-317.   Google Scholar

[3]

J. W. Bebernes and R. Wilhelmsen, A general boundary value problem technique, J. Differential Equations, 8 (1970), 404-415.  doi: 10.1016/0022-0396(70)90014-8.  Google Scholar

[4]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[5]

A. Cabada, An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl., 2011 (2011), Art. ID 893753, 18 pp. doi: 10.1155/2011/893753.  Google Scholar

[6]

C. Corduneanu, Soluţii aproape periodice ale ecuaţiilor diferenţiale neliniare de ordinul al doilea, Com. Acad. R. P. Romîne, 5 (1955), 793–797. Google Scholar

[7]

C. De Coster and P. Habets, Two-Point Boundary Value Problems, Lower and Upper Solutions, Elsevier, Amsterdam, 2006.  Google Scholar

[8]

A. M. Fink, Uniqueness theorems and almost periodic solutions to second order differential equations, J. Differential Equations, 4 (1968), 543-548.  doi: 10.1016/0022-0396(68)90004-1.  Google Scholar

[9]

A. Fonda, G. Klun and A. Sfecci, Non-well-ordered lower and upper solutions for semilinear systems of PDEs, preprint, 2020. Google Scholar

[10]

A. Fonda and R. Toader, Lower and upper solutions to semilinear boundary value problems: An abstract approach, Topol. Methods Nonlinear Anal., 38 (2011), 59-93.   Google Scholar

[11]

A. Fonda and F. Zanolin, Bounded solutions of nonlinear second order ordinary differential equations, Discrete Contin. Dynam. Systems, 4 (1998), 91-98.  doi: 10.3934/dcds.1998.4.91.  Google Scholar

[12]

P. Habets and R. L. Pouso, Examples of the nonexistence of a solution in the presence of upper and lower solutions, ANZIAM J., 44 (2003), 591-594.  doi: 10.1017/S1446181100012955.  Google Scholar

[13]

P. Hartman, Ordinary Differential Equations, Wiley and Sons, New York, 1964.  Google Scholar

[14]

L. K. Jackson and G. Klaasen, A variation of the topological method of Ważewski, SIAM J. Appl. Math., 20 (1971), 124-130.  doi: 10.1137/0120016.  Google Scholar

[15]

J. L. KaplanA. Lasota and J. A. Yorke, An application of the Ważewski retract method to boundary value problems, Zeszyty Nauk. Uniw. Jagielloń. Prace Mat., 16 (1974), 7-14.   Google Scholar

[16]

H.-W. Knobloch, Zwei Kriterien für die Existenz periodischer Lösungen von Differentialgleichungen zweiter Ordnung, Arch. Math., 14 (1963), 182-185.  doi: 10.1007/BF01234941.  Google Scholar

[17]

H.-W. Knobloch, Eine neue Methode zur Approximation periodischer Lösungen nicht-linearer Differentialgleichungen zweiter Ordnung, Math. Z., 82 (1963), 177-197.  doi: 10.1007/BF01111422.  Google Scholar

[18]

J. L. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J., 17 (1950), 457-475.   Google Scholar

[19]

J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., (2) 58 (1998), 733–747. doi: 10.1112/S0024610798006784.  Google Scholar

[20]

M. Nagumo, Über die Differentialgleichung $y" = f(t, y, y')$, Proc. Phys-Math. Soc. Japan, 19 (1937), 861-866.   Google Scholar

[21]

F. ObersnelP. Omari and S. Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions, Nonlinear Anal. Real World Appl., 13 (2012), 2830-2852.  doi: 10.1016/j.nonrwa.2012.04.012.  Google Scholar

[22]

R. Ortega, A boundedness result of Landesman-Lazer type, Differential Integral Equations, 8 (1995), 729-734.   Google Scholar

[23]

R. Ortega, Periodic Differential Equations in the Plane. A Topological Perspective, De Gruyter, Berlin, 2019. doi: 10.1515/9783110551167.  Google Scholar

[24]

R. Ortega and M. Tarallo, Almost periodic upper and lower solutions, J. Differential Equations, 193 (2003), 343-358.  doi: 10.1016/S0022-0396(03)00130-X.  Google Scholar

[25]

R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096.  doi: 10.1090/S0002-9939-96-03457-0.  Google Scholar

[26]

E. Picard, Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires, J. Math. Pures Appl., 9 (1893), 217-271.   Google Scholar

[27]

F. Sadyrbaev, Ważewski method and upper and lower functions for higher order ordinary differential equations, Univ. Iagel. Acta Math., 36 (1998), 165-170.   Google Scholar

[28]

K. Schmitt, Bounded solutions of nonlinear second order differential equations, Duke Math. J., 36 (1969), 237-243.   Google Scholar

[29]

K. Schmitt and J. R. Ward, Almost periodic solutions of nonlinear second order differential equations, Results Math., 21 (1992), 190-199.  doi: 10.1007/BF03323078.  Google Scholar

[30]

G. Scorza Dragoni, Il problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo ordine, Math. Ann., 105 (1931), 133-143.  doi: 10.1007/BF01455811.  Google Scholar

[31]

R. Srzednicki, Ważewski method and Conley index, Handbook of Differential Equations (eds. A. Cañada, P. Drábek, A. Fonda) Elsevier/North-Holland, Amsterdam, 2004,591–684.  Google Scholar

[32]

N. Soave and G. Verzini, Bounded solutions for a forced bounded oscillator without friction, J. Differential Equations, 256 (2014), 2526-2558.  doi: 10.1016/j.jde.2014.01.015.  Google Scholar

[33]

M. Tarallo and Z. Zhou, Limit periodic upper and lower solutions in a generic sense, Discrete Contin. Dyn. Syst., 38 (2018), 293-309.  doi: 10.3934/dcds.2018014.  Google Scholar

[34]

J. Y. Wang, W. J. Gao and Z. H. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tohoku Math. J., (2) 47 (1995), 327–344. doi: 10.2748/tmj/1178225520.  Google Scholar

[35]

T. Ważewski, Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math., 20 (1947), 279-313.   Google Scholar

show all references

References:
[1]

S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875.  doi: 10.1090/S0002-9947-1991-1010407-9.  Google Scholar

[2]

I. Barbălat, Applications du principe topologique de T. Ważewski aux équations différentielles du second ordre, Ann. Polon. Math., 5 (1958), 303-317.   Google Scholar

[3]

J. W. Bebernes and R. Wilhelmsen, A general boundary value problem technique, J. Differential Equations, 8 (1970), 404-415.  doi: 10.1016/0022-0396(70)90014-8.  Google Scholar

[4]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[5]

A. Cabada, An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl., 2011 (2011), Art. ID 893753, 18 pp. doi: 10.1155/2011/893753.  Google Scholar

[6]

C. Corduneanu, Soluţii aproape periodice ale ecuaţiilor diferenţiale neliniare de ordinul al doilea, Com. Acad. R. P. Romîne, 5 (1955), 793–797. Google Scholar

[7]

C. De Coster and P. Habets, Two-Point Boundary Value Problems, Lower and Upper Solutions, Elsevier, Amsterdam, 2006.  Google Scholar

[8]

A. M. Fink, Uniqueness theorems and almost periodic solutions to second order differential equations, J. Differential Equations, 4 (1968), 543-548.  doi: 10.1016/0022-0396(68)90004-1.  Google Scholar

[9]

A. Fonda, G. Klun and A. Sfecci, Non-well-ordered lower and upper solutions for semilinear systems of PDEs, preprint, 2020. Google Scholar

[10]

A. Fonda and R. Toader, Lower and upper solutions to semilinear boundary value problems: An abstract approach, Topol. Methods Nonlinear Anal., 38 (2011), 59-93.   Google Scholar

[11]

A. Fonda and F. Zanolin, Bounded solutions of nonlinear second order ordinary differential equations, Discrete Contin. Dynam. Systems, 4 (1998), 91-98.  doi: 10.3934/dcds.1998.4.91.  Google Scholar

[12]

P. Habets and R. L. Pouso, Examples of the nonexistence of a solution in the presence of upper and lower solutions, ANZIAM J., 44 (2003), 591-594.  doi: 10.1017/S1446181100012955.  Google Scholar

[13]

P. Hartman, Ordinary Differential Equations, Wiley and Sons, New York, 1964.  Google Scholar

[14]

L. K. Jackson and G. Klaasen, A variation of the topological method of Ważewski, SIAM J. Appl. Math., 20 (1971), 124-130.  doi: 10.1137/0120016.  Google Scholar

[15]

J. L. KaplanA. Lasota and J. A. Yorke, An application of the Ważewski retract method to boundary value problems, Zeszyty Nauk. Uniw. Jagielloń. Prace Mat., 16 (1974), 7-14.   Google Scholar

[16]

H.-W. Knobloch, Zwei Kriterien für die Existenz periodischer Lösungen von Differentialgleichungen zweiter Ordnung, Arch. Math., 14 (1963), 182-185.  doi: 10.1007/BF01234941.  Google Scholar

[17]

H.-W. Knobloch, Eine neue Methode zur Approximation periodischer Lösungen nicht-linearer Differentialgleichungen zweiter Ordnung, Math. Z., 82 (1963), 177-197.  doi: 10.1007/BF01111422.  Google Scholar

[18]

J. L. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J., 17 (1950), 457-475.   Google Scholar

[19]

J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., (2) 58 (1998), 733–747. doi: 10.1112/S0024610798006784.  Google Scholar

[20]

M. Nagumo, Über die Differentialgleichung $y" = f(t, y, y')$, Proc. Phys-Math. Soc. Japan, 19 (1937), 861-866.   Google Scholar

[21]

F. ObersnelP. Omari and S. Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions, Nonlinear Anal. Real World Appl., 13 (2012), 2830-2852.  doi: 10.1016/j.nonrwa.2012.04.012.  Google Scholar

[22]

R. Ortega, A boundedness result of Landesman-Lazer type, Differential Integral Equations, 8 (1995), 729-734.   Google Scholar

[23]

R. Ortega, Periodic Differential Equations in the Plane. A Topological Perspective, De Gruyter, Berlin, 2019. doi: 10.1515/9783110551167.  Google Scholar

[24]

R. Ortega and M. Tarallo, Almost periodic upper and lower solutions, J. Differential Equations, 193 (2003), 343-358.  doi: 10.1016/S0022-0396(03)00130-X.  Google Scholar

[25]

R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096.  doi: 10.1090/S0002-9939-96-03457-0.  Google Scholar

[26]

E. Picard, Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires, J. Math. Pures Appl., 9 (1893), 217-271.   Google Scholar

[27]

F. Sadyrbaev, Ważewski method and upper and lower functions for higher order ordinary differential equations, Univ. Iagel. Acta Math., 36 (1998), 165-170.   Google Scholar

[28]

K. Schmitt, Bounded solutions of nonlinear second order differential equations, Duke Math. J., 36 (1969), 237-243.   Google Scholar

[29]

K. Schmitt and J. R. Ward, Almost periodic solutions of nonlinear second order differential equations, Results Math., 21 (1992), 190-199.  doi: 10.1007/BF03323078.  Google Scholar

[30]

G. Scorza Dragoni, Il problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo ordine, Math. Ann., 105 (1931), 133-143.  doi: 10.1007/BF01455811.  Google Scholar

[31]

R. Srzednicki, Ważewski method and Conley index, Handbook of Differential Equations (eds. A. Cañada, P. Drábek, A. Fonda) Elsevier/North-Holland, Amsterdam, 2004,591–684.  Google Scholar

[32]

N. Soave and G. Verzini, Bounded solutions for a forced bounded oscillator without friction, J. Differential Equations, 256 (2014), 2526-2558.  doi: 10.1016/j.jde.2014.01.015.  Google Scholar

[33]

M. Tarallo and Z. Zhou, Limit periodic upper and lower solutions in a generic sense, Discrete Contin. Dyn. Syst., 38 (2018), 293-309.  doi: 10.3934/dcds.2018014.  Google Scholar

[34]

J. Y. Wang, W. J. Gao and Z. H. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tohoku Math. J., (2) 47 (1995), 327–344. doi: 10.2748/tmj/1178225520.  Google Scholar

[35]

T. Ważewski, Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math., 20 (1947), 279-313.   Google Scholar

Figure 1.  In the red region $ f(t,x,y)>\alpha'(t) $, in the green one $ f(t,x,y)<\alpha'(t) $
Figure 2.  A section of the set $ V $ at time $ t $ with its egress points
Figure 3.  The grid made of quadrilaterals near the point $ (\alpha(t),y_\alpha(t)) $
[1]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[2]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[3]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[4]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[5]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[6]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[7]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[8]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[9]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[10]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[13]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[14]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[15]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[20]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (13)
  • HTML views (36)
  • Cited by (0)

Other articles
by authors

[Back to Top]