August  2021, 41(8): 3709-3724. doi: 10.3934/dcds.2021013

Proximality of multidimensional $ \mathscr{B} $-free systems

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń, 12/18 Chopin Street, 87-100 Toruń, Poland

 

Received  December 2019 Revised  October 2020 Published  January 2021

Fund Project: The author acknowledges the support of the National Science Centre (NCN), Poland, the doctoral scholarship Etiuda no. 2018/28/T/ST1/00435

We characterize proximality of multidimensional $ \mathscr{B} $-free systems in the case of number fields and lattices in $ \mathbb{Z}^m $, $ m\geq2 $.

Citation: Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3709-3724. doi: 10.3934/dcds.2021013
References:
[1]

E. H. El AbdalaouiM. Lemańczyk and T. de la Rue, A dynamical point of view on the set of $\mathscr{B}$-free integers, Int. Math. Res. Not. IMRN, 2015 (2015), 7258-7286.  doi: 10.1093/imrn/rnu164.  Google Scholar

[2]

E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433.  doi: 10.1088/0951-7715/16/4/313.  Google Scholar

[3]

M. Baake, Solution of the coincidence problem in dimensions $d\leq4$, The mathematics of long-range aperiodic order (Waterloo, ON, 1995), 9–44, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 489, Kluwer Acad. Publ., Dordrecht, 1997.  Google Scholar

[4]

M. Baake and C. Huck, Ergodic properties of visible lattice points, Proc. Steklov Inst. Math., 288 (2015), 165-188.  doi: 10.1134/S0081543815010137.  Google Scholar

[5]

M. BaakeC. Huck and N. Strungaru, On weak model sets of extremal density, Indag. Math. (N.S.), 28 (2017), 3-31.  doi: 10.1016/j.indag.2016.11.002.  Google Scholar

[6]

M. BeiglböckV. Bergelson and A. Fish, Sumset phenomenon in countable amenable groups, Adv. Math., 223 (2010), 416-432.  doi: 10.1016/j.aim.2009.08.009.  Google Scholar

[7]

M. BorodzikD. Nguyenand and S. Robins, Tiling the integer lattice with translated sublattices, Mosc. J. Comb. Number Theory, 6 (2016), 3-26.   Google Scholar

[8]

F. Cellarosi and I. Vinogradov, Ergodic properties of $k$-free integers in number fields, J. Mod. Dyn., 7 (2013), 461-488.  doi: 10.3934/jmd.2013.7.461.  Google Scholar

[9]

J. P. Clay, Proximality relations in transformation groups, Trans. Amer. Math. Soc., 108 (1963), 88-96.  doi: 10.1090/S0002-9947-1963-0154269-3.  Google Scholar

[10]

A. DymekS. KasjanJ. Kułaga-Przymus and M. Lemańczyk, $\mathscr{B}$-free sets and dynamics, Trans. Amer. Math. Soc., 370 (2018), 5425-5489.  doi: 10.1090/tran/7132.  Google Scholar

[11]

E. Følner, Generalization of a theorem of Bogoliouboff to topological abelian groups, Math. Scand., 2 (1954), 5–18. https://www.mscand.dk/article/view/10389.  Google Scholar

[12]

E. Følner, On groups with full Banach mean value, Math. Scand., 3 (1955), 243-254.  doi: 10.7146/math.scand.a-10442.  Google Scholar

[13]

C. Huck, On the logarithmic probability that a random integral ideal is $\mathcal{A}$-free, Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, 249–258, Lecture Notes in Math., 2213, Springer, Cham, 2018.  Google Scholar

[14]

S. KasjanG. Keller and M. Lemańczyk, Dynamics of $\mathscr{B}$-free sets: A view through the window, Int. Math. Res. Not. IMRN, 2019 (2019), 2690-2734.  doi: 10.1093/imrn/rnx196.  Google Scholar

[15]

M. Newman, Integral Matrices. Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972.  Google Scholar

[16]

P. Oprocha and G. Zhang, Topological aspects of dynamics of pairs, tuples and sets, Recent Progress in General Topology, III, Atlantis Press, Paris, 2014,665-709. doi: 10.2991/978-94-6239-024-9_16.  Google Scholar

[17]

P. Sarnak, Three Lectures on the Möbius Function, Randomness and Dynamics, http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf.  Google Scholar

[18]

T. S. Wu, Proximal relations in topological dynamics, Proc. Amer. Math. Soc., 16 (1965), 513–514 doi: 10.1090/S0002-9939-1965-0179775-4.  Google Scholar

show all references

References:
[1]

E. H. El AbdalaouiM. Lemańczyk and T. de la Rue, A dynamical point of view on the set of $\mathscr{B}$-free integers, Int. Math. Res. Not. IMRN, 2015 (2015), 7258-7286.  doi: 10.1093/imrn/rnu164.  Google Scholar

[2]

E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433.  doi: 10.1088/0951-7715/16/4/313.  Google Scholar

[3]

M. Baake, Solution of the coincidence problem in dimensions $d\leq4$, The mathematics of long-range aperiodic order (Waterloo, ON, 1995), 9–44, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 489, Kluwer Acad. Publ., Dordrecht, 1997.  Google Scholar

[4]

M. Baake and C. Huck, Ergodic properties of visible lattice points, Proc. Steklov Inst. Math., 288 (2015), 165-188.  doi: 10.1134/S0081543815010137.  Google Scholar

[5]

M. BaakeC. Huck and N. Strungaru, On weak model sets of extremal density, Indag. Math. (N.S.), 28 (2017), 3-31.  doi: 10.1016/j.indag.2016.11.002.  Google Scholar

[6]

M. BeiglböckV. Bergelson and A. Fish, Sumset phenomenon in countable amenable groups, Adv. Math., 223 (2010), 416-432.  doi: 10.1016/j.aim.2009.08.009.  Google Scholar

[7]

M. BorodzikD. Nguyenand and S. Robins, Tiling the integer lattice with translated sublattices, Mosc. J. Comb. Number Theory, 6 (2016), 3-26.   Google Scholar

[8]

F. Cellarosi and I. Vinogradov, Ergodic properties of $k$-free integers in number fields, J. Mod. Dyn., 7 (2013), 461-488.  doi: 10.3934/jmd.2013.7.461.  Google Scholar

[9]

J. P. Clay, Proximality relations in transformation groups, Trans. Amer. Math. Soc., 108 (1963), 88-96.  doi: 10.1090/S0002-9947-1963-0154269-3.  Google Scholar

[10]

A. DymekS. KasjanJ. Kułaga-Przymus and M. Lemańczyk, $\mathscr{B}$-free sets and dynamics, Trans. Amer. Math. Soc., 370 (2018), 5425-5489.  doi: 10.1090/tran/7132.  Google Scholar

[11]

E. Følner, Generalization of a theorem of Bogoliouboff to topological abelian groups, Math. Scand., 2 (1954), 5–18. https://www.mscand.dk/article/view/10389.  Google Scholar

[12]

E. Følner, On groups with full Banach mean value, Math. Scand., 3 (1955), 243-254.  doi: 10.7146/math.scand.a-10442.  Google Scholar

[13]

C. Huck, On the logarithmic probability that a random integral ideal is $\mathcal{A}$-free, Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, 249–258, Lecture Notes in Math., 2213, Springer, Cham, 2018.  Google Scholar

[14]

S. KasjanG. Keller and M. Lemańczyk, Dynamics of $\mathscr{B}$-free sets: A view through the window, Int. Math. Res. Not. IMRN, 2019 (2019), 2690-2734.  doi: 10.1093/imrn/rnx196.  Google Scholar

[15]

M. Newman, Integral Matrices. Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972.  Google Scholar

[16]

P. Oprocha and G. Zhang, Topological aspects of dynamics of pairs, tuples and sets, Recent Progress in General Topology, III, Atlantis Press, Paris, 2014,665-709. doi: 10.2991/978-94-6239-024-9_16.  Google Scholar

[17]

P. Sarnak, Three Lectures on the Möbius Function, Randomness and Dynamics, http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf.  Google Scholar

[18]

T. S. Wu, Proximal relations in topological dynamics, Proc. Amer. Math. Soc., 16 (1965), 513–514 doi: 10.1090/S0002-9939-1965-0179775-4.  Google Scholar

[1]

Álvaro Bustos. Extended symmetry groups of multidimensional subshifts with hierarchical structure. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5869-5895. doi: 10.3934/dcds.2020250

[2]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[3]

K. H. Kim and F. W. Roush. The Williams conjecture is false for irreducible subshifts. Electronic Research Announcements, 1997, 3: 105-109.

[4]

Xiaolu Hou, Frédérique Oggier. Modular lattices from a variation of construction a over number fields. Advances in Mathematics of Communications, 2017, 11 (4) : 719-745. doi: 10.3934/amc.2017053

[5]

Francesco Cellarosi, Ilya Vinogradov. Ergodic properties of $k$-free integers in number fields. Journal of Modern Dynamics, 2013, 7 (3) : 461-488. doi: 10.3934/jmd.2013.7.461

[6]

Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965

[7]

Dou Dou. Minimal subshifts of arbitrary mean topological dimension. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1411-1424. doi: 10.3934/dcds.2017058

[8]

Ronnie Pavlov, Pascal Vanier. The relationship between word complexity and computational complexity in subshifts. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1627-1648. doi: 10.3934/dcds.2020334

[9]

Nicolás Matte Bon. Topological full groups of minimal subshifts with subgroups of intermediate growth. Journal of Modern Dynamics, 2015, 9: 67-80. doi: 10.3934/jmd.2015.9.67

[10]

Christopher Hoffman. Subshifts of finite type which have completely positive entropy. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1497-1516. doi: 10.3934/dcds.2011.29.1497

[11]

Feng Ma, Mingfang Ni. A two-phase method for multidimensional number partitioning problem. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 203-206. doi: 10.3934/naco.2013.3.203

[12]

Amin Sakzad, Mohammad-Reza Sadeghi. On cycle-free lattices with high rate label codes. Advances in Mathematics of Communications, 2010, 4 (4) : 441-452. doi: 10.3934/amc.2010.4.441

[13]

Federico Rodriguez Hertz, Jana Rodriguez Hertz. Cohomology free systems and the first Betti number. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 193-196. doi: 10.3934/dcds.2006.15.193

[14]

Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031

[15]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[16]

Jean-François Biasse. Subexponential time relations in the class group of large degree number fields. Advances in Mathematics of Communications, 2014, 8 (4) : 407-425. doi: 10.3934/amc.2014.8.407

[17]

Laurent Imbert, Michael J. Jacobson, Jr., Arthur Schmidt. Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications, 2010, 4 (2) : 237-260. doi: 10.3934/amc.2010.4.237

[18]

Jungho Park. Dynamic bifurcation theory of Rayleigh-Bénard convection with infinite Prandtl number. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 591-604. doi: 10.3934/dcdsb.2006.6.591

[19]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[20]

Tiago de Carvalho, Bruno Freitas. Birth of an arbitrary number of T-singularities in 3D piecewise smooth vector fields. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4851-4861. doi: 10.3934/dcdsb.2019034

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (132)
  • Cited by (0)

Other articles
by authors

[Back to Top]