
-
Previous Article
Stability of Broucke's isosceles orbit
- DCDS Home
- This Issue
-
Next Article
Proximality of multidimensional $ \mathscr{B} $-free systems
Martin boundary of brownian motion on Gromov hyperbolic metric graphs
1. | Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea |
2. | Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea |
Let $ \widetilde{X} $ be a locally finite Gromov hyperbolic graph whose Gromov boundary consists of infinitely many points and with a cocompact isometric action of a discrete group $ \Gamma $. We show the uniform Ancona inequality for the Brownian motion which implies that the $ \lambda $-Martin boundary coincides with the Gromov boundary for any $ \lambda \in [0, \lambda_0], $ in particular at the bottom of the spectrum $ \lambda_0 $.
References:
[1] |
S. Albeverio and M. Röckner,
Classical Dirichlet forms on topological spacesthe construction of an associated diffusion process, Probab. Th. Rel. Fields, 83 (1989), 405-434.
doi: 10.1007/BF00964372. |
[2] |
A. Ancona,
Negatively curved manifolds, elliptic operators and the Martin boundary, Ann. of Math., 125 (1987), 495-536.
doi: 10.2307/1971409. |
[3] |
A. F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, 91, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-1146-4. |
[4] |
A. Bendikov, L. Saloff-Coste, M. Salvatori and W. Woess,
The heat semigroup and Brownian motion on strip complexes, Adv. in Math., 226 (2011), 992-1055.
doi: 10.1016/j.aim.2010.07.014. |
[5] |
M. Bonk and O. Schramm,
Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., 10 (2000), 266-306.
doi: 10.1007/s000390050009. |
[6] |
P. Bougerol,
Théorème central limite local sur certains groupes de Lie, Ann. Sci. École Norm. Sup., 14 (1981), 403-432.
doi: 10.24033/asens.1412. |
[7] |
M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Fundamental Principles of Mathematical Sciences, 319. Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-12494-9. |
[8] |
M. Brin and Y. Kifer,
Brownian motion, harmonic functions and hyperbolicity for Euclidean complexes, Math. Z., 237 (2001), 421-468.
doi: 10.1007/PL00004875. |
[9] |
S. Y. Cheng and S. T. Yao,
Differential equations on Riemannian manifolds and their geometric applications, Comm. on Pure Appl. Math., 28 (1975), 333-354.
doi: 10.1002/cpa.3160280303. |
[10] |
J. Dodziuk,
Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J., 32 (1983), 703-716.
doi: 10.1512/iumj.1983.32.32046. |
[11] |
J. Eells and B. Fuglede, Harmonic Maps, Between Riemannian Polyhedra, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 142 2001. |
[12] |
M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, Amsterdam and Tokyo, 1980. |
[13] |
M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Process, De Gruyter Studies in Mathematics, 19 Walter de Gruyter, Berlin, 1994.
doi: 10.1515/9783110218091. |
[14] |
É. Ghys and P. de la Harpe, Sur Les Groupes Hyperboliques d'apr$\grave{e}$s Mikhael Gromov, Progress in Mathematics, 83, Birkhäuser Boston, Boston, MA, 1990.
doi: 10.1007/978-1-4684-9167-8. |
[15] |
S. Gouëzel,
Local limit theorem for symmetric random walks in Gromov-hyperbolic groups, J. Amer. Math. Soc., 27 (2014), 893-928.
doi: 10.1090/S0894-0347-2014-00788-8. |
[16] |
S. Gouëzel and S. P. Lalley,
Random walks on co-compact Fuchsian groups, Ann. Sci. École Norm. Sup., 46 (2013), 129-173.
doi: 10.24033/asens.2186. |
[17] |
A. Grigor'yan, Heat kernels and function theory on metric measure spaces, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003,143–172.
doi: 10.1090/conm/338/06073. |
[18] |
S. Haeseler and M. Keller, Generalized solutions and spectrum for Dirichlet forms on graphs, in Random Walks, Boundaries and Spectra, Progr. Probab., Birkhäuser/Springer Basel AG, Basel, 64 (2011), 181–199.
doi: 10.1007/978-3-0346-0244-0_10. |
[19] |
M. Keller and D. Lenz,
Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine. Angew. Math., 666 (2012), 189-223.
doi: 10.1515/CRELLE.2011.122. |
[20] |
V. Kostrykin, J. Potthofff and R. Schrader, Brownian motions on metric graphs, J. Math. Phys., 53 (2012), 36 pp.
doi: 10.1063/1.4714661. |
[21] |
V. Kostrykin and R. Schrader, Laplacians on metric graphs: Eigenvalues, resolvents and semigroups, in Quantum Graphs and Their Applications, (edited by G. Berkolaiko, R. Carlson, S. A. Fulling, and P. Kuchment), Contemp. Math., Amer. Math. Soc., Providence, RI, 415 (2006), 201–225.
doi: 10.1090/conm/415. |
[22] |
F. Ledrappier and S. Lim, Local limit theorem in negative curvature, to appear Duke Mathematics Journal, arXiv: 1503.04156. Google Scholar |
[23] |
D. Lenz, P Stollmann and I. Veselić,
The Allegretto-Piepenbrink theorem for strongly local Dirichlet forms, Documenta Math., 14 (2009), 167-189.
|
[24] |
T. Lyons and D. Sullivan,
Function theory, random paths and covering spaces, J. Differential Geom., 19 (1984), 299-323.
doi: 10.4310/jdg/1214438681. |
[25] |
R. McOwen, Partial Differential Equations: Methods and Applications, Prentice Hall, Upper Saddle River, NJ, 1996. Google Scholar |
[26] |
J. R. Munkres, Topology, Second edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. |
[27] |
M. Pivarski and L. Saloff-Coste, Small time heat kernel behavior on Riemannian complexes, New York J. Math., 14 (2008), 459–494, http://nyjm.albany.edu/j/2008/14_459.html. |
[28] |
L. Saloff-Coste and W. Woess,
Transition operators on co-compact G-spaces, Rev. Mat. Iberoam., 22 (2006), 747-799.
doi: 10.4171/RMI/473. |
[29] |
L. Saloff-Coste and W. Woess, Computations of spectral radii on $\mathcal G$-spaces, in Spectral Analysis in Geometry and Number Theory (edited by M. Kotani, H. Nalto and T. Tate), Contemp. Math., 484 (2009), 195–218.
doi: 10.1090/conm/484/09476. |
[30] |
K. Schmüdegen, Unbounded Self-adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, 265, Springer, Dordrecht, 2012.
doi: 10.1007/978-94-007-4753-1. |
[31] |
M. L. Silverstein, Symmetric Markov Processes, Lecture Notes in Mathematics No. 426, Springer-Verlag, Berlin-New York, 1974
doi: 10.1007/BFb0073683. |
[32] |
K- T Sturm,
Analysis on local Dirichlet spaces-I. Recurrence, conservativeness and $L^p$-Liouville properties., J. Reine Angew. Math., 456 (1994), 173-196.
doi: 10.1515/crll.1994.456.173. |
[33] |
K-T Sturm, Analysis on local Dirichlet spaces-II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., 32 (1995), 275–312. https://projecteuclid.org/euclid.ojm/1200786053. |
[34] |
K- T Sturm,
Analysis on local Dirichlet spaces-III. The parabolic Harnack inequality, J. Math. Pures Appl., 75 (1996), 273-297.
|
[35] |
K-T Sturm, Metric measure spaces with variable Ricci bounds and couplings of Brownian motions, in Festschrift Masatoshi Fukushima, (edited by Z.-Q. Chen, N. Jacob, M. Takeda and T. Uemura), Interdiscip. Math. Sci, World Sci., World Sci. Publ., Hackensack, NJ, 17 (2015), 553–575.
doi: 10.1142/9789814596534_0027. |
[36] |
D. Sullivan,
Related aspects of positivity in Riemannian geometry, J. Differential Geom., 25 (1987), 327-351.
doi: 10.4310/jdg/1214440979. |
[37] |
R. K. Wojciechowski,
Heat kernel and essential spectrum of infinite graphs, Indiana Univ. Math. J., 58 (2009), 1419-1441.
doi: 10.1512/iumj.2009.58.3575. |
show all references
References:
[1] |
S. Albeverio and M. Röckner,
Classical Dirichlet forms on topological spacesthe construction of an associated diffusion process, Probab. Th. Rel. Fields, 83 (1989), 405-434.
doi: 10.1007/BF00964372. |
[2] |
A. Ancona,
Negatively curved manifolds, elliptic operators and the Martin boundary, Ann. of Math., 125 (1987), 495-536.
doi: 10.2307/1971409. |
[3] |
A. F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, 91, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-1146-4. |
[4] |
A. Bendikov, L. Saloff-Coste, M. Salvatori and W. Woess,
The heat semigroup and Brownian motion on strip complexes, Adv. in Math., 226 (2011), 992-1055.
doi: 10.1016/j.aim.2010.07.014. |
[5] |
M. Bonk and O. Schramm,
Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., 10 (2000), 266-306.
doi: 10.1007/s000390050009. |
[6] |
P. Bougerol,
Théorème central limite local sur certains groupes de Lie, Ann. Sci. École Norm. Sup., 14 (1981), 403-432.
doi: 10.24033/asens.1412. |
[7] |
M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Fundamental Principles of Mathematical Sciences, 319. Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-12494-9. |
[8] |
M. Brin and Y. Kifer,
Brownian motion, harmonic functions and hyperbolicity for Euclidean complexes, Math. Z., 237 (2001), 421-468.
doi: 10.1007/PL00004875. |
[9] |
S. Y. Cheng and S. T. Yao,
Differential equations on Riemannian manifolds and their geometric applications, Comm. on Pure Appl. Math., 28 (1975), 333-354.
doi: 10.1002/cpa.3160280303. |
[10] |
J. Dodziuk,
Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J., 32 (1983), 703-716.
doi: 10.1512/iumj.1983.32.32046. |
[11] |
J. Eells and B. Fuglede, Harmonic Maps, Between Riemannian Polyhedra, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 142 2001. |
[12] |
M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, Amsterdam and Tokyo, 1980. |
[13] |
M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Process, De Gruyter Studies in Mathematics, 19 Walter de Gruyter, Berlin, 1994.
doi: 10.1515/9783110218091. |
[14] |
É. Ghys and P. de la Harpe, Sur Les Groupes Hyperboliques d'apr$\grave{e}$s Mikhael Gromov, Progress in Mathematics, 83, Birkhäuser Boston, Boston, MA, 1990.
doi: 10.1007/978-1-4684-9167-8. |
[15] |
S. Gouëzel,
Local limit theorem for symmetric random walks in Gromov-hyperbolic groups, J. Amer. Math. Soc., 27 (2014), 893-928.
doi: 10.1090/S0894-0347-2014-00788-8. |
[16] |
S. Gouëzel and S. P. Lalley,
Random walks on co-compact Fuchsian groups, Ann. Sci. École Norm. Sup., 46 (2013), 129-173.
doi: 10.24033/asens.2186. |
[17] |
A. Grigor'yan, Heat kernels and function theory on metric measure spaces, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003,143–172.
doi: 10.1090/conm/338/06073. |
[18] |
S. Haeseler and M. Keller, Generalized solutions and spectrum for Dirichlet forms on graphs, in Random Walks, Boundaries and Spectra, Progr. Probab., Birkhäuser/Springer Basel AG, Basel, 64 (2011), 181–199.
doi: 10.1007/978-3-0346-0244-0_10. |
[19] |
M. Keller and D. Lenz,
Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine. Angew. Math., 666 (2012), 189-223.
doi: 10.1515/CRELLE.2011.122. |
[20] |
V. Kostrykin, J. Potthofff and R. Schrader, Brownian motions on metric graphs, J. Math. Phys., 53 (2012), 36 pp.
doi: 10.1063/1.4714661. |
[21] |
V. Kostrykin and R. Schrader, Laplacians on metric graphs: Eigenvalues, resolvents and semigroups, in Quantum Graphs and Their Applications, (edited by G. Berkolaiko, R. Carlson, S. A. Fulling, and P. Kuchment), Contemp. Math., Amer. Math. Soc., Providence, RI, 415 (2006), 201–225.
doi: 10.1090/conm/415. |
[22] |
F. Ledrappier and S. Lim, Local limit theorem in negative curvature, to appear Duke Mathematics Journal, arXiv: 1503.04156. Google Scholar |
[23] |
D. Lenz, P Stollmann and I. Veselić,
The Allegretto-Piepenbrink theorem for strongly local Dirichlet forms, Documenta Math., 14 (2009), 167-189.
|
[24] |
T. Lyons and D. Sullivan,
Function theory, random paths and covering spaces, J. Differential Geom., 19 (1984), 299-323.
doi: 10.4310/jdg/1214438681. |
[25] |
R. McOwen, Partial Differential Equations: Methods and Applications, Prentice Hall, Upper Saddle River, NJ, 1996. Google Scholar |
[26] |
J. R. Munkres, Topology, Second edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. |
[27] |
M. Pivarski and L. Saloff-Coste, Small time heat kernel behavior on Riemannian complexes, New York J. Math., 14 (2008), 459–494, http://nyjm.albany.edu/j/2008/14_459.html. |
[28] |
L. Saloff-Coste and W. Woess,
Transition operators on co-compact G-spaces, Rev. Mat. Iberoam., 22 (2006), 747-799.
doi: 10.4171/RMI/473. |
[29] |
L. Saloff-Coste and W. Woess, Computations of spectral radii on $\mathcal G$-spaces, in Spectral Analysis in Geometry and Number Theory (edited by M. Kotani, H. Nalto and T. Tate), Contemp. Math., 484 (2009), 195–218.
doi: 10.1090/conm/484/09476. |
[30] |
K. Schmüdegen, Unbounded Self-adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, 265, Springer, Dordrecht, 2012.
doi: 10.1007/978-94-007-4753-1. |
[31] |
M. L. Silverstein, Symmetric Markov Processes, Lecture Notes in Mathematics No. 426, Springer-Verlag, Berlin-New York, 1974
doi: 10.1007/BFb0073683. |
[32] |
K- T Sturm,
Analysis on local Dirichlet spaces-I. Recurrence, conservativeness and $L^p$-Liouville properties., J. Reine Angew. Math., 456 (1994), 173-196.
doi: 10.1515/crll.1994.456.173. |
[33] |
K-T Sturm, Analysis on local Dirichlet spaces-II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., 32 (1995), 275–312. https://projecteuclid.org/euclid.ojm/1200786053. |
[34] |
K- T Sturm,
Analysis on local Dirichlet spaces-III. The parabolic Harnack inequality, J. Math. Pures Appl., 75 (1996), 273-297.
|
[35] |
K-T Sturm, Metric measure spaces with variable Ricci bounds and couplings of Brownian motions, in Festschrift Masatoshi Fukushima, (edited by Z.-Q. Chen, N. Jacob, M. Takeda and T. Uemura), Interdiscip. Math. Sci, World Sci., World Sci. Publ., Hackensack, NJ, 17 (2015), 553–575.
doi: 10.1142/9789814596534_0027. |
[36] |
D. Sullivan,
Related aspects of positivity in Riemannian geometry, J. Differential Geom., 25 (1987), 327-351.
doi: 10.4310/jdg/1214440979. |
[37] |
R. K. Wojciechowski,
Heat kernel and essential spectrum of infinite graphs, Indiana Univ. Math. J., 58 (2009), 1419-1441.
doi: 10.1512/iumj.2009.58.3575. |



[1] |
Klaus Reiner Schenk-Hoppé. Random attractors--general properties, existence and applications to stochastic bifurcation theory. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 99-130. doi: 10.3934/dcds.1998.4.99 |
[2] |
J. G. Ollason, N. Ren. A general dynamical theory of foraging in animals. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 713-720. doi: 10.3934/dcdsb.2004.4.713 |
[3] |
Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684 |
[4] |
Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122 |
[5] |
Tomás Caraballo, Stefanie Sonner. Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6383-6403. doi: 10.3934/dcds.2017277 |
[6] |
Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017 |
[7] |
Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304 |
[8] |
Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355 |
[9] |
Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1 |
[10] |
Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745 |
[11] |
Julian Braun, Bernd Schmidt. On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks & Heterogeneous Media, 2013, 8 (4) : 879-912. doi: 10.3934/nhm.2013.8.879 |
[12] |
Gung-Min Gie, Chang-Yeol Jung, Roger Temam. Recent progresses in boundary layer theory. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2521-2583. doi: 10.3934/dcds.2016.36.2521 |
[13] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[14] |
Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689 |
[15] |
Michael Ghil. The wind-driven ocean circulation: Applying dynamical systems theory to a climate problem. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 189-228. doi: 10.3934/dcds.2017008 |
[16] |
Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025 |
[17] |
Yujun Zhu. Preimage entropy for random dynamical systems. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829 |
[18] |
Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639 |
[19] |
Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093 |
[20] |
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473 |
2019 Impact Factor: 1.338
Tools
Article outline
Figures and Tables
[Back to Top]