
-
Previous Article
Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source
- DCDS Home
- This Issue
-
Next Article
Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative
Stability of Broucke's isosceles orbit
Mathematics Department, Utah Valley University, 800 W University Parkway, Orem, UT 84058, USA |
We extend the result of Yan to Broucke's isosceles orbit with masses $ m_1 $, $ m_1 $, and $ m_2 $ with $ 2m_1 + m_2 = 3 $. Under suitable changes of variables, isolated binary collisions between the two mass $ m_1 $ particles are regularizable. We analytically extend a method of Roberts to perform linear stability analysis in this setting. Linear stability is reduced to computing three entries of a $ 4 \times 4 $ matrix related to the monodromy matrix. Additionally, it is shown that the four-degrees-of-freedom setting has a two-degrees-of-freedom invariant set, and linear stability results in the subset comes "for free" from the calculation in the full space. The final numerical analysis shows that the four-degrees-of-freedom orbit is linearly unstable except for the interval $ 0.595 < m_1 < 0.715 $, whereas the two-degrees-of-freedom orbit is linearly stable for a much wider interval.
References:
[1] |
L. Bakker and S. Simmons,
Stability of the rhomboidal symmetric-mass orbit, Discrete Contin. Dyn. Syst., 35 (2015), 1-23.
doi: 10.3934/dcds.2015.35.1. |
[2] |
L. F. Bakker, S. C. Mancuso and S. C. Simmons, Linear stability for some symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, J. Math. Anal. Appl., 392 (2012), 136–147, URL http://dx.doi.org/10.1007/s10569-010-9325-z.
doi: 10.1016/j.jmaa.2012.03.022. |
[3] |
L. F. Bakker, T. Ouyang, D. Yan and S. Simmons,
Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, Celestial Mech. Dynam. Astronom., 110 (2011), 271-290.
doi: 10.1007/s10569-011-9358-y. |
[4] |
L. F. Bakker, T. Ouyang, D. Yan and S. Simmons,
Erratum to: Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem [mr2821623], Celestial Mech. Dynam. Astronom., 112 (2012), 459-460.
doi: 10.1007/s10569-012-9402-6. |
[5] |
L. F. Bakker, T. Ouyang, D. Yan, S. Simmons and G. E. Roberts,
Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem, Celestial Mech. Dynam. Astronom., 108 (2010), 147-164.
doi: 10.1007/s10569-010-9298-y. |
[6] |
R. Broucke, On the isosceles triangle configuration in the planar general three body problem, Astron. Astrophys., 73 (1979), 303–313, URL https://doi.org/10.3934/dcds.2015.35.1. Google Scholar |
[7] |
M. Hénon,
Stability of interplay oribts, Cel. Mech., 15 (1977), 243-261.
doi: 10.1007/BF01228465. |
[8] |
J. Hietarinta and S. Mikkola,
Chaos in the one-dimensional gravitational three-body problem, Chaos, 3 (1993), 183-203.
doi: 10.1063/1.165984. |
[9] |
Y. Long, Index Theory for Symplectic Paths with Applications, vol. 207 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2002.
doi: 10.1007/978-3-0348-8175-3. |
[10] |
R. Martínez,
On the existence of doubly symmetric "Schubart-like" periodic orbits, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943-975.
doi: 10.3934/dcdsb.2012.17.943. |
[11] |
R. McGehee,
Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.
doi: 10.1007/BF01390175. |
[12] |
K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem, vol. 90 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2009. |
[13] |
R. Moeckel,
A topological existence proof for the Schubart orbits in the collinear three-body problem, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609-620.
doi: 10.3934/dcdsb.2008.10.609. |
[14] |
R. Moeckel and R. Montgomery,
Symmetric regularization, reduction and blow-up of the planar three-body problem, Pacific J. Math., 262 (2013), 129-189.
doi: 10.2140/pjm.2013.262.129. |
[15] |
T. Ouyang and D. Yan,
Periodic solutions with alternating singularities in the collinear four-body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 229-239.
doi: 10.1007/s10569-010-9325-z. |
[16] |
T. Ouyang, S. C. Simmons and D. Yan,
Periodic solutions with singularities in two dimensions in the $n$-body problem, Rocky Mtn. J. Math., 42 (2012), 1601-1614.
doi: 10.1216/RMJ-2012-42-5-1601. |
[17] |
G. E. Roberts,
Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963.
doi: 10.1017/S0143385707000284. |
[18] |
J. Schubart,
Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem, Astr. Nachr., 283 (1956), 17-22.
|
[19] |
M. Shibayama,
Minimizing periodic orbits with regularizable collisions in the $n$-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841.
doi: 10.1007/s00205-010-0334-6. |
[20] |
W. L. Sweatman,
The symmetrical one-dimensional Newtonian four-body problem: a numerical investigation, Celestial Mech. Dynam. Astronom., 82 (2002), 179-201.
doi: 10.1023/A:1014599918133. |
[21] |
W. L. Sweatman,
A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem, Celestial Mech. Dynam. Astronom., 94 (2006), 37-65.
doi: 10.1007/s10569-005-2289-8. |
[22] |
A. Venturelli,
A variational proof of the existence of von Schubart's orbit, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699-717.
doi: 10.3934/dcdsb.2008.10.699. |
[23] |
D. Yan,
Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem, J. Math. Anal. Appl., 388 (2012), 942-951.
doi: 10.1016/j.jmaa.2011.10.032. |
[24] |
D. Yan,
Existence of the Broucke periodic orbit and its linear stability, J. Math. Anal. Appl., 389 (2012), 656-664.
doi: 10.1016/j.jmaa.2011.12.024. |
show all references
References:
[1] |
L. Bakker and S. Simmons,
Stability of the rhomboidal symmetric-mass orbit, Discrete Contin. Dyn. Syst., 35 (2015), 1-23.
doi: 10.3934/dcds.2015.35.1. |
[2] |
L. F. Bakker, S. C. Mancuso and S. C. Simmons, Linear stability for some symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, J. Math. Anal. Appl., 392 (2012), 136–147, URL http://dx.doi.org/10.1007/s10569-010-9325-z.
doi: 10.1016/j.jmaa.2012.03.022. |
[3] |
L. F. Bakker, T. Ouyang, D. Yan and S. Simmons,
Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, Celestial Mech. Dynam. Astronom., 110 (2011), 271-290.
doi: 10.1007/s10569-011-9358-y. |
[4] |
L. F. Bakker, T. Ouyang, D. Yan and S. Simmons,
Erratum to: Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem [mr2821623], Celestial Mech. Dynam. Astronom., 112 (2012), 459-460.
doi: 10.1007/s10569-012-9402-6. |
[5] |
L. F. Bakker, T. Ouyang, D. Yan, S. Simmons and G. E. Roberts,
Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem, Celestial Mech. Dynam. Astronom., 108 (2010), 147-164.
doi: 10.1007/s10569-010-9298-y. |
[6] |
R. Broucke, On the isosceles triangle configuration in the planar general three body problem, Astron. Astrophys., 73 (1979), 303–313, URL https://doi.org/10.3934/dcds.2015.35.1. Google Scholar |
[7] |
M. Hénon,
Stability of interplay oribts, Cel. Mech., 15 (1977), 243-261.
doi: 10.1007/BF01228465. |
[8] |
J. Hietarinta and S. Mikkola,
Chaos in the one-dimensional gravitational three-body problem, Chaos, 3 (1993), 183-203.
doi: 10.1063/1.165984. |
[9] |
Y. Long, Index Theory for Symplectic Paths with Applications, vol. 207 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2002.
doi: 10.1007/978-3-0348-8175-3. |
[10] |
R. Martínez,
On the existence of doubly symmetric "Schubart-like" periodic orbits, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943-975.
doi: 10.3934/dcdsb.2012.17.943. |
[11] |
R. McGehee,
Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.
doi: 10.1007/BF01390175. |
[12] |
K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem, vol. 90 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2009. |
[13] |
R. Moeckel,
A topological existence proof for the Schubart orbits in the collinear three-body problem, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609-620.
doi: 10.3934/dcdsb.2008.10.609. |
[14] |
R. Moeckel and R. Montgomery,
Symmetric regularization, reduction and blow-up of the planar three-body problem, Pacific J. Math., 262 (2013), 129-189.
doi: 10.2140/pjm.2013.262.129. |
[15] |
T. Ouyang and D. Yan,
Periodic solutions with alternating singularities in the collinear four-body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 229-239.
doi: 10.1007/s10569-010-9325-z. |
[16] |
T. Ouyang, S. C. Simmons and D. Yan,
Periodic solutions with singularities in two dimensions in the $n$-body problem, Rocky Mtn. J. Math., 42 (2012), 1601-1614.
doi: 10.1216/RMJ-2012-42-5-1601. |
[17] |
G. E. Roberts,
Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963.
doi: 10.1017/S0143385707000284. |
[18] |
J. Schubart,
Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem, Astr. Nachr., 283 (1956), 17-22.
|
[19] |
M. Shibayama,
Minimizing periodic orbits with regularizable collisions in the $n$-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841.
doi: 10.1007/s00205-010-0334-6. |
[20] |
W. L. Sweatman,
The symmetrical one-dimensional Newtonian four-body problem: a numerical investigation, Celestial Mech. Dynam. Astronom., 82 (2002), 179-201.
doi: 10.1023/A:1014599918133. |
[21] |
W. L. Sweatman,
A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem, Celestial Mech. Dynam. Astronom., 94 (2006), 37-65.
doi: 10.1007/s10569-005-2289-8. |
[22] |
A. Venturelli,
A variational proof of the existence of von Schubart's orbit, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699-717.
doi: 10.3934/dcdsb.2008.10.699. |
[23] |
D. Yan,
Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem, J. Math. Anal. Appl., 388 (2012), 942-951.
doi: 10.1016/j.jmaa.2011.10.032. |
[24] |
D. Yan,
Existence of the Broucke periodic orbit and its linear stability, J. Math. Anal. Appl., 389 (2012), 656-664.
doi: 10.1016/j.jmaa.2011.12.024. |








[1] |
Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020050 |
[2] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[3] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[4] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[5] |
Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227 |
[6] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[7] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[8] |
Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083 |
[9] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[10] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[11] |
Akbar Mahmoodi Rishakani, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad, Nasour Bagheri. Cryptographic properties of cyclic binary matrices. Advances in Mathematics of Communications, 2021, 15 (2) : 311-327. doi: 10.3934/amc.2020068 |
[12] |
Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218 |
[13] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[14] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[15] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[16] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[17] |
Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074 |
[18] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[19] |
Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020118 |
[20] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]