August  2021, 41(8): 3759-3779. doi: 10.3934/dcds.2021015

Stability of Broucke's isosceles orbit

Mathematics Department, Utah Valley University, 800 W University Parkway, Orem, UT 84058, USA

Received  July 2020 Revised  October 2020 Published  January 2021

We extend the result of Yan to Broucke's isosceles orbit with masses $ m_1 $, $ m_1 $, and $ m_2 $ with $ 2m_1 + m_2 = 3 $. Under suitable changes of variables, isolated binary collisions between the two mass $ m_1 $ particles are regularizable. We analytically extend a method of Roberts to perform linear stability analysis in this setting. Linear stability is reduced to computing three entries of a $ 4 \times 4 $ matrix related to the monodromy matrix. Additionally, it is shown that the four-degrees-of-freedom setting has a two-degrees-of-freedom invariant set, and linear stability results in the subset comes "for free" from the calculation in the full space. The final numerical analysis shows that the four-degrees-of-freedom orbit is linearly unstable except for the interval $ 0.595 < m_1 < 0.715 $, whereas the two-degrees-of-freedom orbit is linearly stable for a much wider interval.

Citation: Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015
References:
[1]

L. Bakker and S. Simmons, Stability of the rhomboidal symmetric-mass orbit, Discrete Contin. Dyn. Syst., 35 (2015), 1-23.  doi: 10.3934/dcds.2015.35.1.  Google Scholar

[2]

L. F. Bakker, S. C. Mancuso and S. C. Simmons, Linear stability for some symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, J. Math. Anal. Appl., 392 (2012), 136–147, URL http://dx.doi.org/10.1007/s10569-010-9325-z. doi: 10.1016/j.jmaa.2012.03.022.  Google Scholar

[3]

L. F. BakkerT. OuyangD. Yan and S. Simmons, Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, Celestial Mech. Dynam. Astronom., 110 (2011), 271-290.  doi: 10.1007/s10569-011-9358-y.  Google Scholar

[4]

L. F. BakkerT. OuyangD. Yan and S. Simmons, Erratum to: Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem [mr2821623], Celestial Mech. Dynam. Astronom., 112 (2012), 459-460.  doi: 10.1007/s10569-012-9402-6.  Google Scholar

[5]

L. F. BakkerT. OuyangD. YanS. Simmons and G. E. Roberts, Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem, Celestial Mech. Dynam. Astronom., 108 (2010), 147-164.  doi: 10.1007/s10569-010-9298-y.  Google Scholar

[6]

R. Broucke, On the isosceles triangle configuration in the planar general three body problem, Astron. Astrophys., 73 (1979), 303–313, URL https://doi.org/10.3934/dcds.2015.35.1. Google Scholar

[7]

M. Hénon, Stability of interplay oribts, Cel. Mech., 15 (1977), 243-261.  doi: 10.1007/BF01228465.  Google Scholar

[8]

J. Hietarinta and S. Mikkola, Chaos in the one-dimensional gravitational three-body problem, Chaos, 3 (1993), 183-203.  doi: 10.1063/1.165984.  Google Scholar

[9]

Y. Long, Index Theory for Symplectic Paths with Applications, vol. 207 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2002. doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[10]

R. Martínez, On the existence of doubly symmetric "Schubart-like" periodic orbits, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943-975.  doi: 10.3934/dcdsb.2012.17.943.  Google Scholar

[11]

R. McGehee, Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.  doi: 10.1007/BF01390175.  Google Scholar

[12]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem, vol. 90 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2009.  Google Scholar

[13]

R. Moeckel, A topological existence proof for the Schubart orbits in the collinear three-body problem, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609-620.  doi: 10.3934/dcdsb.2008.10.609.  Google Scholar

[14]

R. Moeckel and R. Montgomery, Symmetric regularization, reduction and blow-up of the planar three-body problem, Pacific J. Math., 262 (2013), 129-189.  doi: 10.2140/pjm.2013.262.129.  Google Scholar

[15]

T. Ouyang and D. Yan, Periodic solutions with alternating singularities in the collinear four-body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 229-239.  doi: 10.1007/s10569-010-9325-z.  Google Scholar

[16]

T. OuyangS. C. Simmons and D. Yan, Periodic solutions with singularities in two dimensions in the $n$-body problem, Rocky Mtn. J. Math., 42 (2012), 1601-1614.  doi: 10.1216/RMJ-2012-42-5-1601.  Google Scholar

[17]

G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963.  doi: 10.1017/S0143385707000284.  Google Scholar

[18]

J. Schubart, Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem, Astr. Nachr., 283 (1956), 17-22.   Google Scholar

[19]

M. Shibayama, Minimizing periodic orbits with regularizable collisions in the $n$-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841.  doi: 10.1007/s00205-010-0334-6.  Google Scholar

[20]

W. L. Sweatman, The symmetrical one-dimensional Newtonian four-body problem: a numerical investigation, Celestial Mech. Dynam. Astronom., 82 (2002), 179-201.  doi: 10.1023/A:1014599918133.  Google Scholar

[21]

W. L. Sweatman, A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem, Celestial Mech. Dynam. Astronom., 94 (2006), 37-65.  doi: 10.1007/s10569-005-2289-8.  Google Scholar

[22]

A. Venturelli, A variational proof of the existence of von Schubart's orbit, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699-717.  doi: 10.3934/dcdsb.2008.10.699.  Google Scholar

[23]

D. Yan, Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem, J. Math. Anal. Appl., 388 (2012), 942-951.  doi: 10.1016/j.jmaa.2011.10.032.  Google Scholar

[24]

D. Yan, Existence of the Broucke periodic orbit and its linear stability, J. Math. Anal. Appl., 389 (2012), 656-664.  doi: 10.1016/j.jmaa.2011.12.024.  Google Scholar

show all references

References:
[1]

L. Bakker and S. Simmons, Stability of the rhomboidal symmetric-mass orbit, Discrete Contin. Dyn. Syst., 35 (2015), 1-23.  doi: 10.3934/dcds.2015.35.1.  Google Scholar

[2]

L. F. Bakker, S. C. Mancuso and S. C. Simmons, Linear stability for some symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, J. Math. Anal. Appl., 392 (2012), 136–147, URL http://dx.doi.org/10.1007/s10569-010-9325-z. doi: 10.1016/j.jmaa.2012.03.022.  Google Scholar

[3]

L. F. BakkerT. OuyangD. Yan and S. Simmons, Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, Celestial Mech. Dynam. Astronom., 110 (2011), 271-290.  doi: 10.1007/s10569-011-9358-y.  Google Scholar

[4]

L. F. BakkerT. OuyangD. Yan and S. Simmons, Erratum to: Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem [mr2821623], Celestial Mech. Dynam. Astronom., 112 (2012), 459-460.  doi: 10.1007/s10569-012-9402-6.  Google Scholar

[5]

L. F. BakkerT. OuyangD. YanS. Simmons and G. E. Roberts, Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem, Celestial Mech. Dynam. Astronom., 108 (2010), 147-164.  doi: 10.1007/s10569-010-9298-y.  Google Scholar

[6]

R. Broucke, On the isosceles triangle configuration in the planar general three body problem, Astron. Astrophys., 73 (1979), 303–313, URL https://doi.org/10.3934/dcds.2015.35.1. Google Scholar

[7]

M. Hénon, Stability of interplay oribts, Cel. Mech., 15 (1977), 243-261.  doi: 10.1007/BF01228465.  Google Scholar

[8]

J. Hietarinta and S. Mikkola, Chaos in the one-dimensional gravitational three-body problem, Chaos, 3 (1993), 183-203.  doi: 10.1063/1.165984.  Google Scholar

[9]

Y. Long, Index Theory for Symplectic Paths with Applications, vol. 207 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2002. doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[10]

R. Martínez, On the existence of doubly symmetric "Schubart-like" periodic orbits, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943-975.  doi: 10.3934/dcdsb.2012.17.943.  Google Scholar

[11]

R. McGehee, Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.  doi: 10.1007/BF01390175.  Google Scholar

[12]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem, vol. 90 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2009.  Google Scholar

[13]

R. Moeckel, A topological existence proof for the Schubart orbits in the collinear three-body problem, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609-620.  doi: 10.3934/dcdsb.2008.10.609.  Google Scholar

[14]

R. Moeckel and R. Montgomery, Symmetric regularization, reduction and blow-up of the planar three-body problem, Pacific J. Math., 262 (2013), 129-189.  doi: 10.2140/pjm.2013.262.129.  Google Scholar

[15]

T. Ouyang and D. Yan, Periodic solutions with alternating singularities in the collinear four-body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 229-239.  doi: 10.1007/s10569-010-9325-z.  Google Scholar

[16]

T. OuyangS. C. Simmons and D. Yan, Periodic solutions with singularities in two dimensions in the $n$-body problem, Rocky Mtn. J. Math., 42 (2012), 1601-1614.  doi: 10.1216/RMJ-2012-42-5-1601.  Google Scholar

[17]

G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963.  doi: 10.1017/S0143385707000284.  Google Scholar

[18]

J. Schubart, Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem, Astr. Nachr., 283 (1956), 17-22.   Google Scholar

[19]

M. Shibayama, Minimizing periodic orbits with regularizable collisions in the $n$-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841.  doi: 10.1007/s00205-010-0334-6.  Google Scholar

[20]

W. L. Sweatman, The symmetrical one-dimensional Newtonian four-body problem: a numerical investigation, Celestial Mech. Dynam. Astronom., 82 (2002), 179-201.  doi: 10.1023/A:1014599918133.  Google Scholar

[21]

W. L. Sweatman, A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem, Celestial Mech. Dynam. Astronom., 94 (2006), 37-65.  doi: 10.1007/s10569-005-2289-8.  Google Scholar

[22]

A. Venturelli, A variational proof of the existence of von Schubart's orbit, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699-717.  doi: 10.3934/dcdsb.2008.10.699.  Google Scholar

[23]

D. Yan, Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem, J. Math. Anal. Appl., 388 (2012), 942-951.  doi: 10.1016/j.jmaa.2011.10.032.  Google Scholar

[24]

D. Yan, Existence of the Broucke periodic orbit and its linear stability, J. Math. Anal. Appl., 389 (2012), 656-664.  doi: 10.1016/j.jmaa.2011.12.024.  Google Scholar

Figure 1.  The coordinates for Broucke's Orbit
Figure 2.  Broucke's orbit as it evolves in time. One-quarter period is shown. The remainder of the orbit is obtained by a symmetric extension
Figure 3.  A plot of the value of $ Q_4(0) $. The value of $ m_1 $ is plotted on the horizontal axis
Figure 4.  A plot of the numerically-computed upper-left entry $ k_{11} $ from the matrix $ K $ in Equation 11 (vertical) against $ m_1 $ (horizontal)
Figure 4">Figure 5.  A vertically rescaled plot of the graph from Figure 4
Figure 6.  A plot of the value of $ e $ from Equation (11) corresponding to stability in the 2DF setting
Figure 7.  A vertically rescaled plot of the value of $ e $. The curve appears to be asymptotic to the line $ y = 1 $ as $ m_1 \to 0^- $
Figure 8.  A plot of the second non-trivial eigenvalue of $ K $
Figure 9.  A vertically rescaled plot of the value of the second non-trivial eigenvalue of $ K $. For the values of $ m_1 \in [0.595, 0.715] $, this second eigenvalue lies within the interval $ [-1, 1] $
Figure 10.  Both eigenvalue plots superimposed. The two graphs cross at roughly $ m_1 = 0.71 $, where the difference between the two is numerically $ 0.000429 $
[1]

Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062

[2]

Kuo-Chang Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 85-90. doi: 10.3934/dcds.2001.7.85

[3]

Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074

[4]

Tiancheng Ouyang, Zhifu Xie. Regularization of simultaneous binary collisions and solutions with singularity in the collinear four-body problem. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 909-932. doi: 10.3934/dcds.2009.24.909

[5]

Mark Lewis, Daniel Offin, Pietro-Luciano Buono, Mitchell Kovacic. Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1137-1155. doi: 10.3934/dcds.2013.33.1137

[6]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[7]

Roberto Castelli, Susanna Terracini. On the regularization of the collision solutions of the one-center problem with weak forces. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1197-1218. doi: 10.3934/dcds.2011.31.1197

[8]

Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080

[9]

Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158

[10]

Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157

[11]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[12]

G. Bellettini, G. Fusco, G. F. Gronchi. Regularization of the two-body problem via smoothing the potential. Communications on Pure & Applied Analysis, 2003, 2 (3) : 323-353. doi: 10.3934/cpaa.2003.2.323

[13]

Xiangtuan Xiong, Jinmei Li, Jin Wen. Some novel linear regularization methods for a deblurring problem. Inverse Problems & Imaging, 2017, 11 (2) : 403-426. doi: 10.3934/ipi.2017019

[14]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[15]

Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

[16]

Eduardo S. G. Leandro. On the Dziobek configurations of the restricted $(N+1)$-body problem with equal masses. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 589-595. doi: 10.3934/dcdss.2008.1.589

[17]

Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35

[18]

Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323

[19]

Samuel R. Kaplan, Mark Levi, Richard Montgomery. Making the moon reverse its orbit, or, stuttering in the planar three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 569-595. doi: 10.3934/dcdsb.2008.10.569

[20]

Vasile Mioc, Ernesto Pérez-Chavela. The 2-body problem under Fock's potential. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 611-629. doi: 10.3934/dcdss.2008.1.611

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (28)
  • HTML views (119)
  • Cited by (0)

Other articles
by authors

[Back to Top]