
-
Previous Article
Chaotic Delone sets
- DCDS Home
- This Issue
-
Next Article
Martin boundary of brownian motion on Gromov hyperbolic metric graphs
Stability of Broucke's isosceles orbit
Mathematics Department, Utah Valley University, 800 W University Parkway, Orem, UT 84058, USA |
We extend the result of Yan to Broucke's isosceles orbit with masses $ m_1 $, $ m_1 $, and $ m_2 $ with $ 2m_1 + m_2 = 3 $. Under suitable changes of variables, isolated binary collisions between the two mass $ m_1 $ particles are regularizable. We analytically extend a method of Roberts to perform linear stability analysis in this setting. Linear stability is reduced to computing three entries of a $ 4 \times 4 $ matrix related to the monodromy matrix. Additionally, it is shown that the four-degrees-of-freedom setting has a two-degrees-of-freedom invariant set, and linear stability results in the subset comes "for free" from the calculation in the full space. The final numerical analysis shows that the four-degrees-of-freedom orbit is linearly unstable except for the interval $ 0.595 < m_1 < 0.715 $, whereas the two-degrees-of-freedom orbit is linearly stable for a much wider interval.
References:
[1] |
L. Bakker and S. Simmons,
Stability of the rhomboidal symmetric-mass orbit, Discrete Contin. Dyn. Syst., 35 (2015), 1-23.
doi: 10.3934/dcds.2015.35.1. |
[2] |
L. F. Bakker, S. C. Mancuso and S. C. Simmons, Linear stability for some symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, J. Math. Anal. Appl., 392 (2012), 136–147, URL http://dx.doi.org/10.1007/s10569-010-9325-z.
doi: 10.1016/j.jmaa.2012.03.022. |
[3] |
L. F. Bakker, T. Ouyang, D. Yan and S. Simmons,
Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, Celestial Mech. Dynam. Astronom., 110 (2011), 271-290.
doi: 10.1007/s10569-011-9358-y. |
[4] |
L. F. Bakker, T. Ouyang, D. Yan and S. Simmons,
Erratum to: Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem [mr2821623], Celestial Mech. Dynam. Astronom., 112 (2012), 459-460.
doi: 10.1007/s10569-012-9402-6. |
[5] |
L. F. Bakker, T. Ouyang, D. Yan, S. Simmons and G. E. Roberts,
Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem, Celestial Mech. Dynam. Astronom., 108 (2010), 147-164.
doi: 10.1007/s10569-010-9298-y. |
[6] |
R. Broucke, On the isosceles triangle configuration in the planar general three body problem, Astron. Astrophys., 73 (1979), 303–313, URL https://doi.org/10.3934/dcds.2015.35.1. Google Scholar |
[7] |
M. Hénon,
Stability of interplay oribts, Cel. Mech., 15 (1977), 243-261.
doi: 10.1007/BF01228465. |
[8] |
J. Hietarinta and S. Mikkola,
Chaos in the one-dimensional gravitational three-body problem, Chaos, 3 (1993), 183-203.
doi: 10.1063/1.165984. |
[9] |
Y. Long, Index Theory for Symplectic Paths with Applications, vol. 207 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2002.
doi: 10.1007/978-3-0348-8175-3. |
[10] |
R. Martínez,
On the existence of doubly symmetric "Schubart-like" periodic orbits, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943-975.
doi: 10.3934/dcdsb.2012.17.943. |
[11] |
R. McGehee,
Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.
doi: 10.1007/BF01390175. |
[12] |
K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem, vol. 90 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2009. |
[13] |
R. Moeckel,
A topological existence proof for the Schubart orbits in the collinear three-body problem, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609-620.
doi: 10.3934/dcdsb.2008.10.609. |
[14] |
R. Moeckel and R. Montgomery,
Symmetric regularization, reduction and blow-up of the planar three-body problem, Pacific J. Math., 262 (2013), 129-189.
doi: 10.2140/pjm.2013.262.129. |
[15] |
T. Ouyang and D. Yan,
Periodic solutions with alternating singularities in the collinear four-body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 229-239.
doi: 10.1007/s10569-010-9325-z. |
[16] |
T. Ouyang, S. C. Simmons and D. Yan,
Periodic solutions with singularities in two dimensions in the $n$-body problem, Rocky Mtn. J. Math., 42 (2012), 1601-1614.
doi: 10.1216/RMJ-2012-42-5-1601. |
[17] |
G. E. Roberts,
Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963.
doi: 10.1017/S0143385707000284. |
[18] |
J. Schubart,
Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem, Astr. Nachr., 283 (1956), 17-22.
|
[19] |
M. Shibayama,
Minimizing periodic orbits with regularizable collisions in the $n$-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841.
doi: 10.1007/s00205-010-0334-6. |
[20] |
W. L. Sweatman,
The symmetrical one-dimensional Newtonian four-body problem: a numerical investigation, Celestial Mech. Dynam. Astronom., 82 (2002), 179-201.
doi: 10.1023/A:1014599918133. |
[21] |
W. L. Sweatman,
A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem, Celestial Mech. Dynam. Astronom., 94 (2006), 37-65.
doi: 10.1007/s10569-005-2289-8. |
[22] |
A. Venturelli,
A variational proof of the existence of von Schubart's orbit, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699-717.
doi: 10.3934/dcdsb.2008.10.699. |
[23] |
D. Yan,
Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem, J. Math. Anal. Appl., 388 (2012), 942-951.
doi: 10.1016/j.jmaa.2011.10.032. |
[24] |
D. Yan,
Existence of the Broucke periodic orbit and its linear stability, J. Math. Anal. Appl., 389 (2012), 656-664.
doi: 10.1016/j.jmaa.2011.12.024. |
show all references
References:
[1] |
L. Bakker and S. Simmons,
Stability of the rhomboidal symmetric-mass orbit, Discrete Contin. Dyn. Syst., 35 (2015), 1-23.
doi: 10.3934/dcds.2015.35.1. |
[2] |
L. F. Bakker, S. C. Mancuso and S. C. Simmons, Linear stability for some symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, J. Math. Anal. Appl., 392 (2012), 136–147, URL http://dx.doi.org/10.1007/s10569-010-9325-z.
doi: 10.1016/j.jmaa.2012.03.022. |
[3] |
L. F. Bakker, T. Ouyang, D. Yan and S. Simmons,
Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem, Celestial Mech. Dynam. Astronom., 110 (2011), 271-290.
doi: 10.1007/s10569-011-9358-y. |
[4] |
L. F. Bakker, T. Ouyang, D. Yan and S. Simmons,
Erratum to: Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem [mr2821623], Celestial Mech. Dynam. Astronom., 112 (2012), 459-460.
doi: 10.1007/s10569-012-9402-6. |
[5] |
L. F. Bakker, T. Ouyang, D. Yan, S. Simmons and G. E. Roberts,
Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem, Celestial Mech. Dynam. Astronom., 108 (2010), 147-164.
doi: 10.1007/s10569-010-9298-y. |
[6] |
R. Broucke, On the isosceles triangle configuration in the planar general three body problem, Astron. Astrophys., 73 (1979), 303–313, URL https://doi.org/10.3934/dcds.2015.35.1. Google Scholar |
[7] |
M. Hénon,
Stability of interplay oribts, Cel. Mech., 15 (1977), 243-261.
doi: 10.1007/BF01228465. |
[8] |
J. Hietarinta and S. Mikkola,
Chaos in the one-dimensional gravitational three-body problem, Chaos, 3 (1993), 183-203.
doi: 10.1063/1.165984. |
[9] |
Y. Long, Index Theory for Symplectic Paths with Applications, vol. 207 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2002.
doi: 10.1007/978-3-0348-8175-3. |
[10] |
R. Martínez,
On the existence of doubly symmetric "Schubart-like" periodic orbits, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943-975.
doi: 10.3934/dcdsb.2012.17.943. |
[11] |
R. McGehee,
Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.
doi: 10.1007/BF01390175. |
[12] |
K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem, vol. 90 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2009. |
[13] |
R. Moeckel,
A topological existence proof for the Schubart orbits in the collinear three-body problem, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609-620.
doi: 10.3934/dcdsb.2008.10.609. |
[14] |
R. Moeckel and R. Montgomery,
Symmetric regularization, reduction and blow-up of the planar three-body problem, Pacific J. Math., 262 (2013), 129-189.
doi: 10.2140/pjm.2013.262.129. |
[15] |
T. Ouyang and D. Yan,
Periodic solutions with alternating singularities in the collinear four-body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 229-239.
doi: 10.1007/s10569-010-9325-z. |
[16] |
T. Ouyang, S. C. Simmons and D. Yan,
Periodic solutions with singularities in two dimensions in the $n$-body problem, Rocky Mtn. J. Math., 42 (2012), 1601-1614.
doi: 10.1216/RMJ-2012-42-5-1601. |
[17] |
G. E. Roberts,
Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963.
doi: 10.1017/S0143385707000284. |
[18] |
J. Schubart,
Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem, Astr. Nachr., 283 (1956), 17-22.
|
[19] |
M. Shibayama,
Minimizing periodic orbits with regularizable collisions in the $n$-body problem, Arch. Ration. Mech. Anal., 199 (2011), 821-841.
doi: 10.1007/s00205-010-0334-6. |
[20] |
W. L. Sweatman,
The symmetrical one-dimensional Newtonian four-body problem: a numerical investigation, Celestial Mech. Dynam. Astronom., 82 (2002), 179-201.
doi: 10.1023/A:1014599918133. |
[21] |
W. L. Sweatman,
A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem, Celestial Mech. Dynam. Astronom., 94 (2006), 37-65.
doi: 10.1007/s10569-005-2289-8. |
[22] |
A. Venturelli,
A variational proof of the existence of von Schubart's orbit, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699-717.
doi: 10.3934/dcdsb.2008.10.699. |
[23] |
D. Yan,
Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem, J. Math. Anal. Appl., 388 (2012), 942-951.
doi: 10.1016/j.jmaa.2011.10.032. |
[24] |
D. Yan,
Existence of the Broucke periodic orbit and its linear stability, J. Math. Anal. Appl., 389 (2012), 656-664.
doi: 10.1016/j.jmaa.2011.12.024. |








[1] |
Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062 |
[2] |
Kuo-Chang Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 85-90. doi: 10.3934/dcds.2001.7.85 |
[3] |
Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074 |
[4] |
Tiancheng Ouyang, Zhifu Xie. Regularization of simultaneous binary collisions and solutions with singularity in the collinear four-body problem. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 909-932. doi: 10.3934/dcds.2009.24.909 |
[5] |
Mark Lewis, Daniel Offin, Pietro-Luciano Buono, Mitchell Kovacic. Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1137-1155. doi: 10.3934/dcds.2013.33.1137 |
[6] |
Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49 |
[7] |
Roberto Castelli, Susanna Terracini. On the regularization of the collision solutions of the one-center problem with weak forces. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1197-1218. doi: 10.3934/dcds.2011.31.1197 |
[8] |
Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080 |
[9] |
Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158 |
[10] |
Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157 |
[11] |
Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873 |
[12] |
G. Bellettini, G. Fusco, G. F. Gronchi. Regularization of the two-body problem via smoothing the potential. Communications on Pure & Applied Analysis, 2003, 2 (3) : 323-353. doi: 10.3934/cpaa.2003.2.323 |
[13] |
Xiangtuan Xiong, Jinmei Li, Jin Wen. Some novel linear regularization methods for a deblurring problem. Inverse Problems & Imaging, 2017, 11 (2) : 403-426. doi: 10.3934/ipi.2017019 |
[14] |
Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441 |
[15] |
Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523 |
[16] |
Eduardo S. G. Leandro. On the Dziobek configurations of the restricted $(N+1)$-body problem with equal masses. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 589-595. doi: 10.3934/dcdss.2008.1.589 |
[17] |
Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35 |
[18] |
Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323 |
[19] |
Samuel R. Kaplan, Mark Levi, Richard Montgomery. Making the moon reverse its orbit, or, stuttering in the planar three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 569-595. doi: 10.3934/dcdsb.2008.10.569 |
[20] |
Vasile Mioc, Ernesto Pérez-Chavela. The 2-body problem under Fock's potential. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 611-629. doi: 10.3934/dcdss.2008.1.611 |
2019 Impact Factor: 1.338
Tools
Article outline
Figures and Tables
[Back to Top]