Advanced Search
Article Contents
Article Contents

Chaotic Delone sets

  • * Corresponding author: Ramón Barral Lijó (ramonbarrallijo@gmail.com)

    * Corresponding author: Ramón Barral Lijó (ramonbarrallijo@gmail.com) 
Abstract Full Text(HTML) Figure(6) Related Papers Cited by
  • We present a definition of chaotic Delone set and establish the genericity of chaos in the space of $ (\epsilon,\delta) $-Delone sets for $ \epsilon\geq \delta $. We also present a hyperbolic analogue of the cut-and-project method that naturally produces examples of chaotic Delone sets.

    Mathematics Subject Classification: 37D45, 52C23, 37B51.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Construction of $ S_{\ell} $ in $ \mathbb{H}^2 $. The black dots represent points in $ \Gamma x $, the blue area is $ E_{\ell} $, the red dots represent points in $ S_{\ell} $.

    Figure 2.  The disks represent the inverse image of $ \Delta $. The projection of $ k_{1} $ to $ \Sigma $ has one-sided tangency, while the projection of $ k_{2} $ to $ \Sigma $ does not.

    Figure 3.  A 12-gon P

    Figure 4.  A triangle T

    Figure 5.  The picture on the left represents $ T\subset \mathbb{T}^n $; the right one its lift to $ \mathbb{R}^n $ following a grid pattern

    Figure 6.  Approximation of $ S^{+}_{\ell} $ by $ S^{+}_{k} $: The vectors $ \nu_{+}(\ell) $ and $ \nu_{+}(k) $ represent the orientations of the normal bundles of $ \ell $ and $ k $, respectively. Two circles with dotted lines represent the boundary of the $ \rho $-neighbourhoods of $ I $ and $ J $, respectively. The dots represent points in $ \Gamma x $. The blue dots belong to both $ E^{+}_{\ell} $ and $ E^{+}_{k} $. But the black dots do not because they belong to the negative side of the boundary of $ E_{\ell} $ or $ E_{k} $, respectively

  • [1] J. A. Álvarez López and A. Candel, Algebraic characterization of quasi-isometric spaces via the Higson compactification, Topology Appl., 158 (2011), 1679-1694.  doi: 10.1016/j.topol.2011.05.036.
    [2] D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209 pp.
    [3] D. V. Anosov, Geodesic Flows on Closed {R}iemann Manifolds with Negative Curvature, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969.
    [4] M. Baake and D. Lenz, Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra, Ergodic Theory Dynam. Systems, 24 (2004), 1867-1893.  doi: 10.1017/S0143385704000318.
    [5] M. Baake and  U. GrimmAperiodic Order, Vol. 1., A Mathematical Invitation. With a foreword by Roger Penrose. Vol. 149 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2013.  doi: 10.1017/CBO9781139025256.
    [6] J. BanksJ. BrooksG. CairnsG. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.  doi: 10.1080/00029890.1992.11995856.
    [7] R. Barral Lijó and H. Nozawa, Genericity of chaos for colored graphs, preprint (2019), arXiv: 1909.01676.
    [8] J. Belissard, D. Hermann and M. Zarrouati, Hulls of aperiodic solids and gap labeling theorems, in Directions in Mathematical Quasicrystals (eds. R. Baake and R. V. Moody), vol. 13, Amer. Math. Soc., Providence, RI, 2000. doi: 10.1090/crmm/013.
    [9] G. CairnsG. DavisD. EltonA. Kolganova and P. Perversi, Chaotic group actions, Enseign. Math. (2), 41 (1995), 123-133. 
    [10] D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc., 8 (1933), 254-260. 
    [11] F. Dal'bo, Remarques sur le spectre des longueurs d'une surface et comptages, Bol. Soc. Brasil. Mat. (N.S.), 30 (1999), 199-221.  doi: 10.1007/BF01235869.
    [12] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd edition, Addison-Wesley, 1989.
    [13] A. Forrest, J. Hunton and J. Kellendonk, Topological Invariants for Projection Method Patterns, Mem. Amer. Math. Soc., 159 2002, x+120. doi: 10.1090/memo/0758.
    [14] J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodesiques, J. Math. Pures Appl., 4 (1898), 27-73. 
    [15] G. A. Hedlund, On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature, Ann. of Math. (2), 35 (1934), 787-808.  doi: 10.2307/1968495.
    [16] G. A. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc., 45 (1939), 241-260.  doi: 10.1090/S0002-9904-1939-06945-0.
    [17] S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 87-132.  doi: 10.1090/S0273-0979-06-01115-3.
    [18] B. P. Kitchens, Symbolic Dynamics. One-sided, Two-sided and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-58822-8.
    [19] J. C. Lagarias and P. A. B. Pleasants, Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, 23 (2003), 831-867.  doi: 10.1017/S0143385702001566.
    [20] D. Lenz and P. Stollmann, Delone dynamical systems and associated random operators, in Operator Algebras and Mathematical Physics: Conference Proceedings : Constanţa (Romania), July 2-7, 2001 (eds. J. Combes, J. Cuntz, G. Elliott, G. Nenciu, H. Siedentop and S. Stratila), 2003.
    [21] Robert V. Moody (ed.), The Mathematics of Long-Range Aperiodic Order, vol. 489 of NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-94-015-8784-6.
    [22] H. M. Morse, A one-to-one representation of geodesics on a surface of negative curvature, Amer. J. Math., 43 (1921), 33-51.  doi: 10.2307/2370306.
    [23] H. M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100.  doi: 10.1090/S0002-9947-1921-1501161-8.
    [24] P. Müller and C. Richard, Ergodic properties of randomly coloured point sets, Canad. J. Math., 65 (2013), 349-402.  doi: 10.4153/CJM-2012-009-7.
    [25] F. M. SchneiderS. KerkhoffM. Behrisch and S. Siegmund, Chaotic actions of topological semigroups, Semigroup Forum, 87 (2013), 590-598.  doi: 10.1007/s00233-013-9517-4.
  • 加载中



Article Metrics

HTML views(1683) PDF downloads(207) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint