• Previous Article
    Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems
  • DCDS Home
  • This Issue
  • Next Article
    Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation
doi: 10.3934/dcds.2021016

Chaotic Delone sets

1. 

Departamento e Instituto de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain

2. 

Research Organization of Science and Technology, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan

3. 

Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK

4. 

Department of Mathematical Sciences, Colleges of Science and Engineering, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan

5. 

Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK

* Corresponding author: Ramón Barral Lijó (ramonbarrallijo@gmail.com)

Received  August 2020 Revised  November 2020 Published  January 2021

We present a definition of chaotic Delone set and establish the genericity of chaos in the space of $ (\epsilon,\delta) $-Delone sets for $ \epsilon\geq \delta $. We also present a hyperbolic analogue of the cut-and-project method that naturally produces examples of chaotic Delone sets.

Citation: Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2021016
References:
[1]

J. A. Álvarez López and A. Candel, Algebraic characterization of quasi-isometric spaces via the Higson compactification, Topology Appl., 158 (2011), 1679-1694.  doi: 10.1016/j.topol.2011.05.036.  Google Scholar

[2]

D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209 pp.  Google Scholar

[3]

D. V. Anosov, Geodesic Flows on Closed {R}iemann Manifolds with Negative Curvature, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969.  Google Scholar

[4]

M. Baake and D. Lenz, Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra, Ergodic Theory Dynam. Systems, 24 (2004), 1867-1893.  doi: 10.1017/S0143385704000318.  Google Scholar

[5] M. Baake and U. Grimm, Aperiodic Order, Vol. 1., A Mathematical Invitation. With a foreword by Roger Penrose. Vol. 149 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2013.  doi: 10.1017/CBO9781139025256.  Google Scholar
[6]

J. BanksJ. BrooksG. CairnsG. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.  doi: 10.1080/00029890.1992.11995856.  Google Scholar

[7]

R. Barral Lijó and H. Nozawa, Genericity of chaos for colored graphs, preprint (2019), arXiv: 1909.01676. Google Scholar

[8]

J. Belissard, D. Hermann and M. Zarrouati, Hulls of aperiodic solids and gap labeling theorems, in Directions in Mathematical Quasicrystals (eds. R. Baake and R. V. Moody), vol. 13, Amer. Math. Soc., Providence, RI, 2000. doi: 10.1090/crmm/013.  Google Scholar

[9]

G. CairnsG. DavisD. EltonA. Kolganova and P. Perversi, Chaotic group actions, Enseign. Math. (2), 41 (1995), 123-133.   Google Scholar

[10]

D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc., 8 (1933), 254-260.   Google Scholar

[11]

F. Dal'bo, Remarques sur le spectre des longueurs d'une surface et comptages, Bol. Soc. Brasil. Mat. (N.S.), 30 (1999), 199-221.  doi: 10.1007/BF01235869.  Google Scholar

[12]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd edition, Addison-Wesley, 1989.  Google Scholar

[13]

A. Forrest, J. Hunton and J. Kellendonk, Topological Invariants for Projection Method Patterns, Mem. Amer. Math. Soc., 159 2002, x+120. doi: 10.1090/memo/0758.  Google Scholar

[14]

J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodesiques, J. Math. Pures Appl., 4 (1898), 27-73.   Google Scholar

[15]

G. A. Hedlund, On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature, Ann. of Math. (2), 35 (1934), 787-808.  doi: 10.2307/1968495.  Google Scholar

[16]

G. A. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc., 45 (1939), 241-260.  doi: 10.1090/S0002-9904-1939-06945-0.  Google Scholar

[17]

S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 87-132.  doi: 10.1090/S0273-0979-06-01115-3.  Google Scholar

[18]

B. P. Kitchens, Symbolic Dynamics. One-sided, Two-sided and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-58822-8.  Google Scholar

[19]

J. C. Lagarias and P. A. B. Pleasants, Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, 23 (2003), 831-867.  doi: 10.1017/S0143385702001566.  Google Scholar

[20]

D. Lenz and P. Stollmann, Delone dynamical systems and associated random operators, in Operator Algebras and Mathematical Physics: Conference Proceedings : Constanţa (Romania), July 2-7, 2001 (eds. J. Combes, J. Cuntz, G. Elliott, G. Nenciu, H. Siedentop and S. Stratila), 2003.  Google Scholar

[21]

Robert V. Moody (ed.), The Mathematics of Long-Range Aperiodic Order, vol. 489 of NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-94-015-8784-6.  Google Scholar

[22]

H. M. Morse, A one-to-one representation of geodesics on a surface of negative curvature, Amer. J. Math., 43 (1921), 33-51.  doi: 10.2307/2370306.  Google Scholar

[23]

H. M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100.  doi: 10.1090/S0002-9947-1921-1501161-8.  Google Scholar

[24]

P. Müller and C. Richard, Ergodic properties of randomly coloured point sets, Canad. J. Math., 65 (2013), 349-402.  doi: 10.4153/CJM-2012-009-7.  Google Scholar

[25]

F. M. SchneiderS. KerkhoffM. Behrisch and S. Siegmund, Chaotic actions of topological semigroups, Semigroup Forum, 87 (2013), 590-598.  doi: 10.1007/s00233-013-9517-4.  Google Scholar

show all references

References:
[1]

J. A. Álvarez López and A. Candel, Algebraic characterization of quasi-isometric spaces via the Higson compactification, Topology Appl., 158 (2011), 1679-1694.  doi: 10.1016/j.topol.2011.05.036.  Google Scholar

[2]

D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209 pp.  Google Scholar

[3]

D. V. Anosov, Geodesic Flows on Closed {R}iemann Manifolds with Negative Curvature, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969.  Google Scholar

[4]

M. Baake and D. Lenz, Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra, Ergodic Theory Dynam. Systems, 24 (2004), 1867-1893.  doi: 10.1017/S0143385704000318.  Google Scholar

[5] M. Baake and U. Grimm, Aperiodic Order, Vol. 1., A Mathematical Invitation. With a foreword by Roger Penrose. Vol. 149 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2013.  doi: 10.1017/CBO9781139025256.  Google Scholar
[6]

J. BanksJ. BrooksG. CairnsG. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.  doi: 10.1080/00029890.1992.11995856.  Google Scholar

[7]

R. Barral Lijó and H. Nozawa, Genericity of chaos for colored graphs, preprint (2019), arXiv: 1909.01676. Google Scholar

[8]

J. Belissard, D. Hermann and M. Zarrouati, Hulls of aperiodic solids and gap labeling theorems, in Directions in Mathematical Quasicrystals (eds. R. Baake and R. V. Moody), vol. 13, Amer. Math. Soc., Providence, RI, 2000. doi: 10.1090/crmm/013.  Google Scholar

[9]

G. CairnsG. DavisD. EltonA. Kolganova and P. Perversi, Chaotic group actions, Enseign. Math. (2), 41 (1995), 123-133.   Google Scholar

[10]

D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc., 8 (1933), 254-260.   Google Scholar

[11]

F. Dal'bo, Remarques sur le spectre des longueurs d'une surface et comptages, Bol. Soc. Brasil. Mat. (N.S.), 30 (1999), 199-221.  doi: 10.1007/BF01235869.  Google Scholar

[12]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd edition, Addison-Wesley, 1989.  Google Scholar

[13]

A. Forrest, J. Hunton and J. Kellendonk, Topological Invariants for Projection Method Patterns, Mem. Amer. Math. Soc., 159 2002, x+120. doi: 10.1090/memo/0758.  Google Scholar

[14]

J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodesiques, J. Math. Pures Appl., 4 (1898), 27-73.   Google Scholar

[15]

G. A. Hedlund, On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature, Ann. of Math. (2), 35 (1934), 787-808.  doi: 10.2307/1968495.  Google Scholar

[16]

G. A. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc., 45 (1939), 241-260.  doi: 10.1090/S0002-9904-1939-06945-0.  Google Scholar

[17]

S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 87-132.  doi: 10.1090/S0273-0979-06-01115-3.  Google Scholar

[18]

B. P. Kitchens, Symbolic Dynamics. One-sided, Two-sided and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-58822-8.  Google Scholar

[19]

J. C. Lagarias and P. A. B. Pleasants, Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, 23 (2003), 831-867.  doi: 10.1017/S0143385702001566.  Google Scholar

[20]

D. Lenz and P. Stollmann, Delone dynamical systems and associated random operators, in Operator Algebras and Mathematical Physics: Conference Proceedings : Constanţa (Romania), July 2-7, 2001 (eds. J. Combes, J. Cuntz, G. Elliott, G. Nenciu, H. Siedentop and S. Stratila), 2003.  Google Scholar

[21]

Robert V. Moody (ed.), The Mathematics of Long-Range Aperiodic Order, vol. 489 of NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-94-015-8784-6.  Google Scholar

[22]

H. M. Morse, A one-to-one representation of geodesics on a surface of negative curvature, Amer. J. Math., 43 (1921), 33-51.  doi: 10.2307/2370306.  Google Scholar

[23]

H. M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100.  doi: 10.1090/S0002-9947-1921-1501161-8.  Google Scholar

[24]

P. Müller and C. Richard, Ergodic properties of randomly coloured point sets, Canad. J. Math., 65 (2013), 349-402.  doi: 10.4153/CJM-2012-009-7.  Google Scholar

[25]

F. M. SchneiderS. KerkhoffM. Behrisch and S. Siegmund, Chaotic actions of topological semigroups, Semigroup Forum, 87 (2013), 590-598.  doi: 10.1007/s00233-013-9517-4.  Google Scholar

Figure 1.  Construction of $ S_{\ell} $ in $ \mathbb{H}^2 $. The black dots represent points in $ \Gamma x $, the blue area is $ E_{\ell} $, the red dots represent points in $ S_{\ell} $.
Figure 2.  The disks represent the inverse image of $ \Delta $. The projection of $ k_{1} $ to $ \Sigma $ has one-sided tangency, while the projection of $ k_{2} $ to $ \Sigma $ does not.
Figure 3.  A 12-gon P
Figure 4.  A triangle T
Figure 5.  The picture on the left represents $ T\subset \mathbb{T}^n $; the right one its lift to $ \mathbb{R}^n $ following a grid pattern
Figure 6.  Approximation of $ S^{+}_{\ell} $ by $ S^{+}_{k} $: The vectors $ \nu_{+}(\ell) $ and $ \nu_{+}(k) $ represent the orientations of the normal bundles of $ \ell $ and $ k $, respectively. Two circles with dotted lines represent the boundary of the $ \rho $-neighbourhoods of $ I $ and $ J $, respectively. The dots represent points in $ \Gamma x $. The blue dots belong to both $ E^{+}_{\ell} $ and $ E^{+}_{k} $. But the black dots do not because they belong to the negative side of the boundary of $ E_{\ell} $ or $ E_{k} $, respectively
[1]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[2]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[3]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[4]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[5]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[6]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[7]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[8]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[9]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[10]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[13]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[14]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[15]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[16]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[17]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[18]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[19]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (3)
  • HTML views (14)
  • Cited by (0)

[Back to Top]