-
Previous Article
The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function
- DCDS Home
- This Issue
-
Next Article
Diffeomorphisms with a generalized Lipschitz shadowing property
On fair entropy of the tent family
1. | School of Mathematics, Hunan University, Changsha 410082, China |
2. | College of Mathematics, Sichuan University, Chengdu 610064, China |
The notions of fair measure and fair entropy were introduced by Misiurewicz and Rodrigues [
References:
[1] |
V. Baladi, Positive Transfer Operators and Decay of Correlations, volume 16 of Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812813633. |
[2] |
V. Baladi and D. Ruelle,
An extension of the theorem of Milnor and Thurston on the zeta functions of interval maps, Ergodic Theory Dynam. Systems, 14 (1994), 621-632.
doi: 10.1017/S0143385700008087. |
[3] |
O. F. Bandtlow and H. H. Rugh,
Entropy continuity for interval maps with holes, Ergodic Theory Dynam. Systems, 38 (2018), 2036-2061.
doi: 10.1017/etds.2016.115. |
[4] |
K. Brucks and M. Misiurewicz,
The trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems, 16 (1996), 1173-1183.
doi: 10.1017/S0143385700009962. |
[5] |
H. Bruin,
For almost every tent map, the turning point is typical, Fund. Math., 155 (1998), 215-235.
|
[6] |
E. M. Coven, I. Kan and J. A. Yorke,
Pseudo-orbit shadowing in the family of tent maps, Trans. Amer. Math. Soc., 308 (1988), 227-241.
doi: 10.1090/S0002-9947-1988-0946440-2. |
[7] |
N. Dobbs and N. Mihalache,
Diabolical entropy, Comm. Math. Phys., 365 (2019), 1091-1123.
doi: 10.1007/s00220-019-03293-y. |
[8] |
M. Keane,
Strongly mixing $g$-measures, Invent. Math., 16 (1972), 309-324.
doi: 10.1007/BF01425715. |
[9] |
G. Keller and C. Liverani, Stability of the spectrum for transfer operators., Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141-152, http://www.numdam.org/item/?id=ASNSP_1999_4_28_1_141_0. |
[10] |
F. Ledrappier,
Principe variationnel et systèmes dynamiques symboliques, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 30 (1974), 185-202.
doi: 10.1007/BF00533471. |
[11] |
C. Liverani, B. Saussol and S. Vaienti,
Conformal measure and decay of correlation for covering weighted systems, Ergodic Theory Dynam. Systems, 18 (1998), 1399-1420.
doi: 10.1017/S0143385798118023. |
[12] |
J. Milnor and W. Thurston, On iterated maps of the interval, In Dynamical Systems (College Park, MD, 1986-87), volume 1342 of Lecture Notes in Math., Springer, Berlin, 1988, 465-563.
doi: 10.1007/BFb0082847. |
[13] |
M. Misiurewicz and A. Rodrigues,
Counting preimages, Ergodic Theory Dynam. Systems, 38 (2018), 1837-1856.
doi: 10.1017/etds.2016.103. |
[14] |
H. H. Rugh and L. Tan,
Kneading with weights, J. Fractal Geom., 2 (2015), 339-375.
doi: 10.4171/JFG/24. |
[15] |
G. Tiozzo,
Continuity of core entropy of quadratic polynomials, Invent. Math., 203 (2016), 891-921.
doi: 10.1007/s00222-015-0605-9. |
[16] |
G. Tiozzo,
The local Hölder exponent for the entropy of real unimodal maps, Sci. China Math., 61 (2018), 2299-2310.
doi: 10.1007/s11425-017-9293-7. |
[17] |
P. Walters,
Ruelle's operator theorem and $g$-measures, Trans. Amer. Math. Soc., 214 (1975), 375-387.
doi: 10.2307/1997113. |
show all references
References:
[1] |
V. Baladi, Positive Transfer Operators and Decay of Correlations, volume 16 of Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812813633. |
[2] |
V. Baladi and D. Ruelle,
An extension of the theorem of Milnor and Thurston on the zeta functions of interval maps, Ergodic Theory Dynam. Systems, 14 (1994), 621-632.
doi: 10.1017/S0143385700008087. |
[3] |
O. F. Bandtlow and H. H. Rugh,
Entropy continuity for interval maps with holes, Ergodic Theory Dynam. Systems, 38 (2018), 2036-2061.
doi: 10.1017/etds.2016.115. |
[4] |
K. Brucks and M. Misiurewicz,
The trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems, 16 (1996), 1173-1183.
doi: 10.1017/S0143385700009962. |
[5] |
H. Bruin,
For almost every tent map, the turning point is typical, Fund. Math., 155 (1998), 215-235.
|
[6] |
E. M. Coven, I. Kan and J. A. Yorke,
Pseudo-orbit shadowing in the family of tent maps, Trans. Amer. Math. Soc., 308 (1988), 227-241.
doi: 10.1090/S0002-9947-1988-0946440-2. |
[7] |
N. Dobbs and N. Mihalache,
Diabolical entropy, Comm. Math. Phys., 365 (2019), 1091-1123.
doi: 10.1007/s00220-019-03293-y. |
[8] |
M. Keane,
Strongly mixing $g$-measures, Invent. Math., 16 (1972), 309-324.
doi: 10.1007/BF01425715. |
[9] |
G. Keller and C. Liverani, Stability of the spectrum for transfer operators., Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141-152, http://www.numdam.org/item/?id=ASNSP_1999_4_28_1_141_0. |
[10] |
F. Ledrappier,
Principe variationnel et systèmes dynamiques symboliques, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 30 (1974), 185-202.
doi: 10.1007/BF00533471. |
[11] |
C. Liverani, B. Saussol and S. Vaienti,
Conformal measure and decay of correlation for covering weighted systems, Ergodic Theory Dynam. Systems, 18 (1998), 1399-1420.
doi: 10.1017/S0143385798118023. |
[12] |
J. Milnor and W. Thurston, On iterated maps of the interval, In Dynamical Systems (College Park, MD, 1986-87), volume 1342 of Lecture Notes in Math., Springer, Berlin, 1988, 465-563.
doi: 10.1007/BFb0082847. |
[13] |
M. Misiurewicz and A. Rodrigues,
Counting preimages, Ergodic Theory Dynam. Systems, 38 (2018), 1837-1856.
doi: 10.1017/etds.2016.103. |
[14] |
H. H. Rugh and L. Tan,
Kneading with weights, J. Fractal Geom., 2 (2015), 339-375.
doi: 10.4171/JFG/24. |
[15] |
G. Tiozzo,
Continuity of core entropy of quadratic polynomials, Invent. Math., 203 (2016), 891-921.
doi: 10.1007/s00222-015-0605-9. |
[16] |
G. Tiozzo,
The local Hölder exponent for the entropy of real unimodal maps, Sci. China Math., 61 (2018), 2299-2310.
doi: 10.1007/s11425-017-9293-7. |
[17] |
P. Walters,
Ruelle's operator theorem and $g$-measures, Trans. Amer. Math. Soc., 214 (1975), 375-387.
doi: 10.2307/1997113. |
[1] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[2] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[3] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[4] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[5] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[6] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[7] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[8] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[9] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[10] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[11] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[12] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[13] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[14] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[15] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[16] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[17] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[18] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[19] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[20] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]