August  2021, 41(8): 3817-3836. doi: 10.3934/dcds.2021018

Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five

1. 

SM-UCR, Ciudad Universitaria Carlos Monge Alfaro, Departamento de Ciencias Naturales, Apdo: 111-4250, San Ramón, Alajuela, Costa Rica

2. 

IMECC-UNICAMP, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária, 13083-859, Campinas, São Paulo, Brazil

* Corresponding author

Received  August 2020 Published  August 2021 Early access  January 2021

Fund Project: The second author is partially supported by CNPq/Brazil grant 303762/2019-5 and FAPESP/Brazil grant 2019/02512-5

In this paper we study the scattering of radial solutions to a $ l $-component system of nonlinear Schrödinger equations with quadratic-type growth interactions in dimension five. Our approach is based on the recent technique introduced by Dodson and Murphy, which relies on the radial Sobolev embedding and a Morawetz estimate.

Citation: Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018
References:
[1]

A. K. Arora, Scattering of radial data in the focusing NLS and generalized Hartree equations, Discrete Contin. Dyn. Syst., 39 (2019), 6643-6668.  doi: 10.3934/dcds.2019289.  Google Scholar

[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[3]

M. ColinL. Di Menza and J. C. Saut, Solitons in quadratic media, Nonlinearity, 29 (2016), 1000-1035.  doi: 10.1088/0951-7715/29/3/1000.  Google Scholar

[4]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.  doi: 10.1090/proc/13678.  Google Scholar

[5]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the non-radial focusing NLS, Math. Res. Lett., 25 (2018), 1805-1825.  doi: 10.4310/MRL.2018.v25.n6.a5.  Google Scholar

[6]

D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.  doi: 10.1142/S0219891605000361.  Google Scholar

[7]

M. Hamano, Global dynamics below the ground state for the quadratic Schödinger system in 5D, preprint, arXiv: 1805.12245. Google Scholar

[8]

M. Hamano, T. Inui and K. Nishimura, Scattering for the quadratic nonlinear Schrödinger system in $ \mathbb{R}^5$ without mass-resonance condition, preprint, arXiv: 1903.05880. Google Scholar

[9]

N. HayashiT. Ozawa and K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.  doi: 10.1016/j.anihpc.2012.10.007.  Google Scholar

[10]

T. InuiN. Kishimoto and K. Nishimura, Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.  doi: 10.3934/dcds.2019275.  Google Scholar

[11]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[12]

Y. S. KivsharA. A. SukhorukovE. A. OstrovskayaT. J. AlexanderO. BangS. M. SaltielC. B. Clausen and P. L. Christiansen, Multi-component optical solitary waves, Physica A: Statistical Mechanics and its Applications, 288 (2000), 152-173.  doi: 10.1016/S0378-4371(00)00420-9.  Google Scholar

[13]

F. Meng and C. Xu, Scattering for mass-resonance nonlinear Schrödinger system in 5D, J. Differential Equations, 275 (2021), 837-857.  doi: 10.1016/j.jde.2020.11.005.  Google Scholar

[14]

N. Noguera and A. Pastor, Blow-up solutions for a system of Schrödinger equations with general quadratic-type nonlinearities in dimensions five and six, preprint, arXiv: 2003.11103. Google Scholar

[15]

N. Noguera and A. Pastor, On the dynamics of a quadratic Schrödinger system in dimension $n = 5$, Dyn. Partial Differ. Equ., 17 (2020), 1. doi: 10.4310/DPDE.2020.v17.n1.a1.  Google Scholar

[16]

N. Noguera and A. Pastor, A system of Schrödinger equations with general quadratic-type nonlinearities, to appear in Commun. Contemp. Math., 2021. doi: 10.1142/S0219199720500236.  Google Scholar

[17]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[18]

A. Pastor, On three-wave interaction Schrödinger systems with quadratic nonlinearities: global well-posedness and standing waves, Commun. Pure Appl. Anal., 18 (2019), 2217-2242.  doi: 10.3934/cpaa.2019100.  Google Scholar

[19]

T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-48.  doi: 10.4310/DPDE.2004.v1.n1.a1.  Google Scholar

[20]

M. E. Taylor, Tools for PDE, Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs 81, American Mathematical Society, Providence, RI, 2000. doi: 10.1090/surv/081.  Google Scholar

[21]

H. Wang and Q. Yang, Scattering for the 5D quadratic NLS system without mass-resonance, J. Math. Phys., 60 (2019), 121508, 23 pp. doi: 10.1063/1.5119293.  Google Scholar

show all references

References:
[1]

A. K. Arora, Scattering of radial data in the focusing NLS and generalized Hartree equations, Discrete Contin. Dyn. Syst., 39 (2019), 6643-6668.  doi: 10.3934/dcds.2019289.  Google Scholar

[2]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[3]

M. ColinL. Di Menza and J. C. Saut, Solitons in quadratic media, Nonlinearity, 29 (2016), 1000-1035.  doi: 10.1088/0951-7715/29/3/1000.  Google Scholar

[4]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.  doi: 10.1090/proc/13678.  Google Scholar

[5]

B. Dodson and J. Murphy, A new proof of scattering below the ground state for the non-radial focusing NLS, Math. Res. Lett., 25 (2018), 1805-1825.  doi: 10.4310/MRL.2018.v25.n6.a5.  Google Scholar

[6]

D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.  doi: 10.1142/S0219891605000361.  Google Scholar

[7]

M. Hamano, Global dynamics below the ground state for the quadratic Schödinger system in 5D, preprint, arXiv: 1805.12245. Google Scholar

[8]

M. Hamano, T. Inui and K. Nishimura, Scattering for the quadratic nonlinear Schrödinger system in $ \mathbb{R}^5$ without mass-resonance condition, preprint, arXiv: 1903.05880. Google Scholar

[9]

N. HayashiT. Ozawa and K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.  doi: 10.1016/j.anihpc.2012.10.007.  Google Scholar

[10]

T. InuiN. Kishimoto and K. Nishimura, Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.  doi: 10.3934/dcds.2019275.  Google Scholar

[11]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[12]

Y. S. KivsharA. A. SukhorukovE. A. OstrovskayaT. J. AlexanderO. BangS. M. SaltielC. B. Clausen and P. L. Christiansen, Multi-component optical solitary waves, Physica A: Statistical Mechanics and its Applications, 288 (2000), 152-173.  doi: 10.1016/S0378-4371(00)00420-9.  Google Scholar

[13]

F. Meng and C. Xu, Scattering for mass-resonance nonlinear Schrödinger system in 5D, J. Differential Equations, 275 (2021), 837-857.  doi: 10.1016/j.jde.2020.11.005.  Google Scholar

[14]

N. Noguera and A. Pastor, Blow-up solutions for a system of Schrödinger equations with general quadratic-type nonlinearities in dimensions five and six, preprint, arXiv: 2003.11103. Google Scholar

[15]

N. Noguera and A. Pastor, On the dynamics of a quadratic Schrödinger system in dimension $n = 5$, Dyn. Partial Differ. Equ., 17 (2020), 1. doi: 10.4310/DPDE.2020.v17.n1.a1.  Google Scholar

[16]

N. Noguera and A. Pastor, A system of Schrödinger equations with general quadratic-type nonlinearities, to appear in Commun. Contemp. Math., 2021. doi: 10.1142/S0219199720500236.  Google Scholar

[17]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[18]

A. Pastor, On three-wave interaction Schrödinger systems with quadratic nonlinearities: global well-posedness and standing waves, Commun. Pure Appl. Anal., 18 (2019), 2217-2242.  doi: 10.3934/cpaa.2019100.  Google Scholar

[19]

T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-48.  doi: 10.4310/DPDE.2004.v1.n1.a1.  Google Scholar

[20]

M. E. Taylor, Tools for PDE, Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs 81, American Mathematical Society, Providence, RI, 2000. doi: 10.1090/surv/081.  Google Scholar

[21]

H. Wang and Q. Yang, Scattering for the 5D quadratic NLS system without mass-resonance, J. Math. Phys., 60 (2019), 121508, 23 pp. doi: 10.1063/1.5119293.  Google Scholar

[1]

Van Duong Dinh, Sahbi Keraani. The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2837-2876. doi: 10.3934/dcdss.2020407

[2]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[3]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[5]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3821-3836. doi: 10.3934/dcdss.2020436

[7]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[8]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[9]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[10]

Haidong Liu, Zhaoli Liu. Positive solutions of a nonlinear Schrödinger system with nonconstant potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1431-1464. doi: 10.3934/dcds.2016.36.1431

[11]

Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4265-4285. doi: 10.3934/dcds.2012.32.4265

[12]

Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241

[13]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, 2021, 29 (4) : 2561-2597. doi: 10.3934/era.2021002

[14]

Hongyu Ye. Positive solutions for critically coupled Schrödinger systems with attractive interactions. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 485-507. doi: 10.3934/dcds.2018022

[15]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[16]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[17]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[18]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[19]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[20]

Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (147)
  • HTML views (181)
  • Cited by (0)

Other articles
by authors

[Back to Top]