-
Previous Article
Properties of multicorrelation sequences and large returns under some ergodicity assumptions
- DCDS Home
- This Issue
-
Next Article
Orbital and asymptotic stability of a train of peakons for the Novikov equation
Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five
1. | SM-UCR, Ciudad Universitaria Carlos Monge Alfaro, Departamento de Ciencias Naturales, Apdo: 111-4250, San Ramón, Alajuela, Costa Rica |
2. | IMECC-UNICAMP, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária, 13083-859, Campinas, São Paulo, Brazil |
In this paper we study the scattering of radial solutions to a $ l $-component system of nonlinear Schrödinger equations with quadratic-type growth interactions in dimension five. Our approach is based on the recent technique introduced by Dodson and Murphy, which relies on the radial Sobolev embedding and a Morawetz estimate.
References:
[1] |
A. K. Arora,
Scattering of radial data in the focusing NLS and generalized Hartree equations, Discrete Contin. Dyn. Syst., 39 (2019), 6643-6668.
doi: 10.3934/dcds.2019289. |
[2] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[3] |
M. Colin, L. Di Menza and J. C. Saut,
Solitons in quadratic media, Nonlinearity, 29 (2016), 1000-1035.
doi: 10.1088/0951-7715/29/3/1000. |
[4] |
B. Dodson and J. Murphy,
A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.
doi: 10.1090/proc/13678. |
[5] |
B. Dodson and J. Murphy,
A new proof of scattering below the ground state for the non-radial focusing NLS, Math. Res. Lett., 25 (2018), 1805-1825.
doi: 10.4310/MRL.2018.v25.n6.a5. |
[6] |
D. Foschi,
Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.
doi: 10.1142/S0219891605000361. |
[7] |
M. Hamano, Global dynamics below the ground state for the quadratic Schödinger system in 5D, preprint, arXiv: 1805.12245. Google Scholar |
[8] |
M. Hamano, T. Inui and K. Nishimura, Scattering for the quadratic nonlinear Schrödinger system in $ \mathbb{R}^5$ without mass-resonance condition, preprint, arXiv: 1903.05880. Google Scholar |
[9] |
N. Hayashi, T. Ozawa and K. Tanaka,
On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.
doi: 10.1016/j.anihpc.2012.10.007. |
[10] |
T. Inui, N. Kishimoto and K. Nishimura,
Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.
doi: 10.3934/dcds.2019275. |
[11] |
C. E. Kenig and F. Merle,
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[12] |
Y. S. Kivshar, A. A. Sukhorukov, E. A. Ostrovskaya, T. J. Alexander, O. Bang, S. M. Saltiel, C. B. Clausen and P. L. Christiansen,
Multi-component optical solitary waves, Physica A: Statistical Mechanics and its Applications, 288 (2000), 152-173.
doi: 10.1016/S0378-4371(00)00420-9. |
[13] |
F. Meng and C. Xu,
Scattering for mass-resonance nonlinear Schrödinger system in 5D, J. Differential Equations, 275 (2021), 837-857.
doi: 10.1016/j.jde.2020.11.005. |
[14] |
N. Noguera and A. Pastor, Blow-up solutions for a system of Schrödinger equations with general quadratic-type nonlinearities in dimensions five and six, preprint, arXiv: 2003.11103. Google Scholar |
[15] |
N. Noguera and A. Pastor, On the dynamics of a quadratic Schrödinger system in dimension $n = 5$, Dyn. Partial Differ. Equ., 17 (2020), 1.
doi: 10.4310/DPDE.2020.v17.n1.a1. |
[16] |
N. Noguera and A. Pastor, A system of Schrödinger equations with general quadratic-type nonlinearities, to appear in Commun. Contemp. Math., 2021.
doi: 10.1142/S0219199720500236. |
[17] |
T. Ogawa and Y. Tsutsumi,
Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.
doi: 10.1016/0022-0396(91)90052-B. |
[18] |
A. Pastor,
On three-wave interaction Schrödinger systems with quadratic nonlinearities: global well-posedness and standing waves, Commun. Pure Appl. Anal., 18 (2019), 2217-2242.
doi: 10.3934/cpaa.2019100. |
[19] |
T. Tao,
On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-48.
doi: 10.4310/DPDE.2004.v1.n1.a1. |
[20] |
M. E. Taylor, Tools for PDE, Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs 81, American Mathematical Society, Providence, RI, 2000.
doi: 10.1090/surv/081. |
[21] |
H. Wang and Q. Yang, Scattering for the 5D quadratic NLS system without mass-resonance, J. Math. Phys., 60 (2019), 121508, 23 pp.
doi: 10.1063/1.5119293. |
show all references
References:
[1] |
A. K. Arora,
Scattering of radial data in the focusing NLS and generalized Hartree equations, Discrete Contin. Dyn. Syst., 39 (2019), 6643-6668.
doi: 10.3934/dcds.2019289. |
[2] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[3] |
M. Colin, L. Di Menza and J. C. Saut,
Solitons in quadratic media, Nonlinearity, 29 (2016), 1000-1035.
doi: 10.1088/0951-7715/29/3/1000. |
[4] |
B. Dodson and J. Murphy,
A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867.
doi: 10.1090/proc/13678. |
[5] |
B. Dodson and J. Murphy,
A new proof of scattering below the ground state for the non-radial focusing NLS, Math. Res. Lett., 25 (2018), 1805-1825.
doi: 10.4310/MRL.2018.v25.n6.a5. |
[6] |
D. Foschi,
Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), 1-24.
doi: 10.1142/S0219891605000361. |
[7] |
M. Hamano, Global dynamics below the ground state for the quadratic Schödinger system in 5D, preprint, arXiv: 1805.12245. Google Scholar |
[8] |
M. Hamano, T. Inui and K. Nishimura, Scattering for the quadratic nonlinear Schrödinger system in $ \mathbb{R}^5$ without mass-resonance condition, preprint, arXiv: 1903.05880. Google Scholar |
[9] |
N. Hayashi, T. Ozawa and K. Tanaka,
On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.
doi: 10.1016/j.anihpc.2012.10.007. |
[10] |
T. Inui, N. Kishimoto and K. Nishimura,
Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.
doi: 10.3934/dcds.2019275. |
[11] |
C. E. Kenig and F. Merle,
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[12] |
Y. S. Kivshar, A. A. Sukhorukov, E. A. Ostrovskaya, T. J. Alexander, O. Bang, S. M. Saltiel, C. B. Clausen and P. L. Christiansen,
Multi-component optical solitary waves, Physica A: Statistical Mechanics and its Applications, 288 (2000), 152-173.
doi: 10.1016/S0378-4371(00)00420-9. |
[13] |
F. Meng and C. Xu,
Scattering for mass-resonance nonlinear Schrödinger system in 5D, J. Differential Equations, 275 (2021), 837-857.
doi: 10.1016/j.jde.2020.11.005. |
[14] |
N. Noguera and A. Pastor, Blow-up solutions for a system of Schrödinger equations with general quadratic-type nonlinearities in dimensions five and six, preprint, arXiv: 2003.11103. Google Scholar |
[15] |
N. Noguera and A. Pastor, On the dynamics of a quadratic Schrödinger system in dimension $n = 5$, Dyn. Partial Differ. Equ., 17 (2020), 1.
doi: 10.4310/DPDE.2020.v17.n1.a1. |
[16] |
N. Noguera and A. Pastor, A system of Schrödinger equations with general quadratic-type nonlinearities, to appear in Commun. Contemp. Math., 2021.
doi: 10.1142/S0219199720500236. |
[17] |
T. Ogawa and Y. Tsutsumi,
Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.
doi: 10.1016/0022-0396(91)90052-B. |
[18] |
A. Pastor,
On three-wave interaction Schrödinger systems with quadratic nonlinearities: global well-posedness and standing waves, Commun. Pure Appl. Anal., 18 (2019), 2217-2242.
doi: 10.3934/cpaa.2019100. |
[19] |
T. Tao,
On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), 1-48.
doi: 10.4310/DPDE.2004.v1.n1.a1. |
[20] |
M. E. Taylor, Tools for PDE, Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs 81, American Mathematical Society, Providence, RI, 2000.
doi: 10.1090/surv/081. |
[21] |
H. Wang and Q. Yang, Scattering for the 5D quadratic NLS system without mass-resonance, J. Math. Phys., 60 (2019), 121508, 23 pp.
doi: 10.1063/1.5119293. |
[1] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[2] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[3] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[4] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
[5] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[6] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[7] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[8] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[9] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[10] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[11] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[12] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[13] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020392 |
[14] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[15] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[16] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[17] |
Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021001 |
[18] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[19] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[20] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]