In this paper, we establish a convergence result for the operator splitting scheme $ Z_{\tau} $ introduced by Ignat [
$ \partial_t u = i \Delta u + i\lambda |u|^{p} u,\qquad u (x,0) = \phi (x), $
where $ p >0 $, $ \lambda \in \{-1,1\} $ and $ (x,t) \in \mathbb{R}^d \times [0,\infty) $. We prove the $ L^2 $ convergence of order $ \mathcal{O}(\tau^{1/2}) $ for the scheme with initial data in the space $ H^1 (\mathbb{R}^d) $ for the energy-subcritical range of $ p $.
Citation: |
[1] | R. Altmann and A. Ostermann, Splitting methods for constrained diffusion-reaction systems, Comput. Math. Appl., 74 (2017), 962-976. doi: 10.1016/j.camwa.2017.02.044. |
[2] | C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 40 (2002), 26-40. doi: 10.1137/S0036142900381497. |
[3] | T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, Amer. Math. Soc/Courant Institute of Mathematical Sciences, Providence, RI/York New, NY, 2003. doi: 10.1090/cln/010. |
[4] | M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425. doi: 10.1006/jfan.2000.3687. |
[5] | J. Eilinghoff, R. Schnaubelt and K. Schratz, Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation, J. Math. Anal. Appl., 442 (2016), 740-760. doi: 10.1016/j.jmaa.2016.05.014. |
[6] | E. Faou, A. Ostermann and K. Schratz, Analysis of exponential splitting methods for inhomogeneous parabolic equations, IMA J. Numer. Anal., 35 (2015), 161-178. doi: 10.1093/imanum/dru002. |
[7] | L. Gauckler and C. Lubich, Splitting integrators for nonlinear Schrödinger equations over long times, Found. Comput. Math., 10 (2010), 275-302. doi: 10.1007/s10208-010-9063-3. |
[8] | L. Gauckler and C. Lubich, Nonlinear Schrödinger equations and their spectral semi-discretizations over long times, Found. Comput. Math., 10 (2010), 141-169. doi: 10.1007/s10208-010-9059-z. |
[9] | L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education/Prentice Hall, Upper Saddle River, NJ, 2004. |
[10] | E. Hansen and A. Ostermann, High-order splitting schemes for semilinear evolution equations (English summary), Bit Numer. Math., 56 (2016), 1303-1316. doi: 10.1007/s10543-016-0604-2. |
[11] | L. I. Ignat, Fully discrete schemes for the Schrödinger equation. Dispersive properties, Math. Models Methods Appl. Sci., 17 (2007), 567-591. doi: 10.1142/S0218202507002029. |
[12] | L. I. Ignat, A splitting method for the nonlinear Schrödinger equation, J. Differential Equations, 250 (2011), 3022-3046. doi: 10.1016/j.jde.2011.01.028. |
[13] | L. I. Ignat and E. Zuazua, A two-grid approximation scheme for nonlinear Schrödinger equations: Dispersive properties and convergence, C. R. Math. Acad. Sci. Paris, 341 (2005), 381-386. doi: 10.1016/j.crma.2005.07.018. |
[14] | L. I. Ignat and E. Zuazua, Numerical dispersive schemes for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 47 (2009), 1366-1390. doi: 10.1137/070683787. |
[15] | M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039. |
[16] | M. Knöller, A. Ostermann and K. Schratz, A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data (English summary), SIAM J. Numer. Anal., 57 (2019), 1967-1986. doi: 10.1137/18M1198375. |
[17] | J. Lu and J. L. Marzuola, Strang splitting methods for a quasilinear Schrödinger equation: Convergence, instability, and dynamics, Commun. Math. Sci., 13 (2015), 1051-1074. doi: 10.4310/CMS.2015.v13.n5.a1. |
[18] | C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equation, Math. Comp., 77 (2008), 2141-2153. doi: 10.1090/S0025-5718-08-02101-7. |
[19] | A. Ostermann, F. Rousset and K. Schratz, Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity, Found. Comput. Math., (2020), to appear. |
[20] | A. Ostermann and K. Schratz, Low regularity exponential-type integrators for semilinear Schrödinger equations, Found. Comput. Math., 18 (2018), 731-755. doi: 10.1007/s10208-017-9352-1. |
[21] | K. Schratz, Y. Wang and X. Zhao, Low-regularity integrators for nonlinear Dirac equations, Math. Comp., 90 (2021), 189-214. doi: 10.1090/mcom/3557. |
[22] | R. S. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714. doi: 10.1215/S0012-7094-77-04430-1. |
[23] | C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999. |
[24] | T. Tao, Nonlinear Dispersive Equations. Local And Global Analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. doi: 10.1090/cbms/106. |
[25] | M. Thalhammer, Higher-order exponential operator splitting methods for time-dependent Schrödinger equations, SIAM J. Numer. Anal., 46 (2008), 2022-2038. doi: 10.1137/060674636. |
[26] | M. Thalhammer, M. Caliari and C. Neuhauser, High-order time-splitting Hermite and Fourier spectral methods, J. Comput. Phys., 228 (2009), 822-832. doi: 10.1016/j.jcp.2008.10.008. |