\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the cardinality of collisional clusters for hard spheres at low density

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • We resume the investigation, started in [2], of the statistics of backward clusters in a gas of $ N $ hard spheres of small diameter $ \varepsilon $. A backward cluster is defined as the group of particles involved directly or indirectly in the backwards-in-time dynamics of a given tagged sphere. We obtain an estimate of the average cardinality of clusters with respect to the equilibrium measure, global in time, uniform in $ \varepsilon, N $ for $ \varepsilon^2 N = 1 $ (Boltzmann-Grad regime).

    Mathematics Subject Classification: Primary:35Q20, 82C40, 82C22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The trajectory of a backward cluster $ BC(1) $ at time $ t $ (of cardinality $ 3 $) is represented on the left. Its tree structure $ {\Gamma}_3 = (1,1,2) $ is given by the graph on the right

  • [1] R. K. Alexander, The Infinite Hard Sphere System, Thesis (Ph.D.)–University of California, Berkeley. 1975.
    [2] K. AokiM. PulvirentiS. Simonella and T. Tsuji, Backward clusters, hierarchy and wild sums for a hard sphere system in a low-density regime, Math. Models Methods Appl. Sci., 25 (2015), 995-1010.  doi: 10.1142/S0218202515500256.
    [3] T. BodineauI. GallagherL. Saint-Raymond and S. Simonella, One-sided convergence in the Boltzmann-Grad limit, Ann. Fac. Sci. Toulouse Math. (6), 27 (2018), 985-1022.  doi: 10.5802/afst.1589.
    [4] T. BodineauI. GallagherL. Saint-Raymond and S. Simonella, Fluctuation theory in the Boltzmann-Grad limit, J. Stat. Phys., 180 (2020), 873-895.  doi: 10.1007/s10955-020-02549-5.
    [5] D. BuragoS. Ferleger and A. Kononenko, Uniform estimates on the number of collisions in semi-dispersing billiards, Ann. of Math. 2, 147 (1998), 695-708.  doi: 10.2307/120962.
    [6] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4419-8524-8.
    [7] R. Denlinger, The propagation of chaos for a rarefied gas of hard spheres in the whole space, Arch. Rat. Mech. Anal., 229 (2018), 885-952.  doi: 10.1007/s00205-018-1229-1.
    [8] A. Gabrielov, V. Keilis-Borok, Ya. Sinai and I. Zaliapin, Statistical properties of the cluster dynamics of the systems of statistical mechanics, in Boltzmann's Legacy, ESI Lectures in Mathematics and Physics, EMS Publishing House, (2008), 203–215. doi: 10.4171/057-1/13.
    [9] I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zürich Adv. Lect. in Math. Ser., 18, EMS, 2013.
    [10] V. I. Gerasimenko and I. V. Gapyak, The Boltzmann-Grad asymptotic behavior of collisional dynamics: A brief survey, Rev. Math. Phys., 33 (2021).
    [11] H. Grad, On the kinetic theory of rarefied gases, Comm. Pure App. Math., 2 (1949), 331-407.  doi: 10.1002/cpa.3160020403.
    [12] H. Grad, Principles of the kinetic theory of gases, in Handbuch der Physik 3, Springer-Verlag, (1958), 205–294.
    [13] R. Illner and M. Pulvirenti, Global Validity of the Boltzmann equation for a two–and three–dimensional rare gas in vacuum: Erratum and improved result, Comm. Math. Phys., 121 (1989), 143-146. 
    [14] F. G. King, BBGKY Hierarchy for Positive Potentials, Thesis (Ph.D.)-University of California, Berkeley. 1975.
    [15] O. E. Lanford, Time evolution of large classical systems, Lect. Notes Phys., 38 (1975), 1-111. 
    [16] T. J. Murphy and E. G. D. Cohen, On the sequences of collisions among hard spheres in infinite space, in Hard Ball Systems and the Lorentz Gas, Szász D. (eds). Enc. of Math. Sci. (Math. Phys. II) Springer, Berlin, Heidelberg, 101 (2000), 29–49. doi: 10.1007/978-3-662-04062-1_3.
    [17] R. I. A. PattersonS. Simonella and W. Wagner, Kinetic theory of cluster dynamics, Phys D, 335 (2016), 26-32.  doi: 10.1016/j.physd.2016.06.007.
    [18] R. I. A. PattersonS. Simonella and W. Wagner, A kinetic equation for the distribution of interaction clusters in rarefied gases, J. Stat. Phys., 169 (2017), 126-167.  doi: 10.1007/s10955-017-1865-0.
    [19] M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short-range potentials, Rev. Math. Phys., 26 (2014), 1450001, 64 pp. doi: 10.1142/S0129055X14500019.
    [20] M. Pulvirenti and S. Simonella, The Boltzmann-Grad limit of a hard sphere system: Analysis of the correlation error, Invent. Math., 207 (2017), 1135-1237.  doi: 10.1007/s00222-016-0682-4.
    [21] M. Pulvirenti and S. Simonella, A kinetic model for epidemic spread, Math. Mech. Complex Syst., 8 (2020), 249-260.  doi: 10.2140/memocs.2020.8.249.
    [22] D. Serre, Hard spheres dynamics: Weak vs strong collisions, preprint, arXiv: 2002.09157.
    [23] J. G. Sina${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$, Construction of dynamics in one-dimensional systems of statistical mechanics, Teoret. Mat. Fiz., 11 (1972), 248-258. 
    [24] J. G. Sina${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$, Construction of a cluster dynamic for the dynamical systems of statistical mechanics, Vestnik Moskov. Univ. Ser. I Mat. Meh., 29 (1974), 152-158. 
    [25] H. Spohn, Large-Scale Dynamics of Interacting Particles, Springer, Berlin, 1991.
    [26] L. N. Vaserstein, On systems of particles with finite range and/or repulsive interactions, Comm. Math. Phys., 69 (1979), 31-56. 
    [27] E. Wild, On Boltzmann's equation in the kinetic theory of gases, Proc. Cambridge Philos. Soc., 47 (1951), 602-609.  doi: 10.1017/s0305004100026992.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(1311) PDF downloads(143) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return