August  2021, 41(8): 3973-3984. doi: 10.3934/dcds.2021024

Decay estimates for nonlinear Schrödinger equations

1. 

Academy of Mathematics and Systems Science, CAS, China

2. 

University of Maryland, USA

Received  August 2020 Revised  December 2020 Published  August 2021 Early access  January 2021

In this short note, we present some decay estimates for nonlinear solutions of 3d quintic, 3d cubic NLS, and 2d quintic NLS (nonlinear Schrödinger equations).

Citation: Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024
References:
[1]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10, American Mathematical Soc., 2003. doi: 10.1090/cln/010.  Google Scholar

[2]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^3$, Ann. of Math., 167 (2008), 767-865.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[3]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear schrödinger equation on $\mathbb{R}^{3}$, Comm. Pure Appl. Math., 57 (2004), 987-1014.  doi: 10.1002/cpa.20029.  Google Scholar

[4]

B. Dodson, Global well-posedness for the defocusing, cubic nonlinear Schrödinger equation with initial data in a critical space, arXiv preprint, arXiv: 2004.09618. Google Scholar

[5]

P. GermainN. Masmoudi and J. Shatah, Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN, 2009 (2009), 414-432.  doi: 10.1093/imrn/rnn135.  Google Scholar

[6]

M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, I, Comm. Math. Phys., 324 (2013), 601-636.  doi: 10.1007/s00220-013-1818-7.  Google Scholar

[7]

N. Hayashi and M. Tsutsumi, $L^\infty(\mathbf{R}^n)$-decay of classical solutions for nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 309-327.  doi: 10.1017/S0308210500019235.  Google Scholar

[8]

J.-L. JournéA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604.  doi: 10.1002/cpa.3160440504.  Google Scholar

[9]

C. Kenig and F. Merle, Scattering for $\dot{H}^{1/2}$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Transactions of the American Mathematical Society, 362 (2010), 1937-1962.  doi: 10.1090/S0002-9947-09-04722-9.  Google Scholar

[10]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332.  doi: 10.1002/cpa.3160380305.  Google Scholar

[11]

S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math., 36 (1983), 133-141.  doi: 10.1002/cpa.3160360106.  Google Scholar

[12]

J.-E. Lin and W. A. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Functional Analysis, 30 (1978), 245-263.  doi: 10.1016/0022-1236(78)90073-3.  Google Scholar

[13]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér., 42 (2009), 261-290.  doi: 10.24033/asens.2096.  Google Scholar

[14]

J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46 (1982), 409-425.  doi: 10.1016/0022-0396(82)90102-4.  Google Scholar

[15]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106, American Mathematical Soc., 2006. doi: 10.1090/cbms/106.  Google Scholar

[16]

X. Yu, Global well-posedness and scattering for the defocusing $\dot{H}^{1/2}$-critical nonlinear Schrödinger equation in $\mathbb{R}^{2}$, arXiv preprint, arXiv: 1805.03230. Google Scholar

show all references

References:
[1]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10, American Mathematical Soc., 2003. doi: 10.1090/cln/010.  Google Scholar

[2]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^3$, Ann. of Math., 167 (2008), 767-865.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[3]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear schrödinger equation on $\mathbb{R}^{3}$, Comm. Pure Appl. Math., 57 (2004), 987-1014.  doi: 10.1002/cpa.20029.  Google Scholar

[4]

B. Dodson, Global well-posedness for the defocusing, cubic nonlinear Schrödinger equation with initial data in a critical space, arXiv preprint, arXiv: 2004.09618. Google Scholar

[5]

P. GermainN. Masmoudi and J. Shatah, Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN, 2009 (2009), 414-432.  doi: 10.1093/imrn/rnn135.  Google Scholar

[6]

M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, I, Comm. Math. Phys., 324 (2013), 601-636.  doi: 10.1007/s00220-013-1818-7.  Google Scholar

[7]

N. Hayashi and M. Tsutsumi, $L^\infty(\mathbf{R}^n)$-decay of classical solutions for nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 309-327.  doi: 10.1017/S0308210500019235.  Google Scholar

[8]

J.-L. JournéA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604.  doi: 10.1002/cpa.3160440504.  Google Scholar

[9]

C. Kenig and F. Merle, Scattering for $\dot{H}^{1/2}$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Transactions of the American Mathematical Society, 362 (2010), 1937-1962.  doi: 10.1090/S0002-9947-09-04722-9.  Google Scholar

[10]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332.  doi: 10.1002/cpa.3160380305.  Google Scholar

[11]

S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math., 36 (1983), 133-141.  doi: 10.1002/cpa.3160360106.  Google Scholar

[12]

J.-E. Lin and W. A. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Functional Analysis, 30 (1978), 245-263.  doi: 10.1016/0022-1236(78)90073-3.  Google Scholar

[13]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér., 42 (2009), 261-290.  doi: 10.24033/asens.2096.  Google Scholar

[14]

J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46 (1982), 409-425.  doi: 10.1016/0022-0396(82)90102-4.  Google Scholar

[15]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106, American Mathematical Soc., 2006. doi: 10.1090/cbms/106.  Google Scholar

[16]

X. Yu, Global well-posedness and scattering for the defocusing $\dot{H}^{1/2}$-critical nonlinear Schrödinger equation in $\mathbb{R}^{2}$, arXiv preprint, arXiv: 1805.03230. Google Scholar

[1]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[2]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[3]

Vincenzo Ambrosio. The nonlinear fractional relativistic Schrödinger equation: Existence, multiplicity, decay and concentration results. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021092

[4]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[5]

Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4265-4285. doi: 10.3934/dcds.2012.32.4265

[6]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[7]

Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2020, 9 (3) : 721-732. doi: 10.3934/eect.2020030

[8]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[9]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[10]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[11]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[12]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[13]

Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2089-2104. doi: 10.3934/cpaa.2017103

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2877-2891. doi: 10.3934/dcdss.2020456

[15]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[16]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[17]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[18]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[19]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[20]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (105)
  • HTML views (167)
  • Cited by (0)

Other articles
by authors

[Back to Top]