In this short note, we present some decay estimates for nonlinear solutions of 3d quintic, 3d cubic NLS, and 2d quintic NLS (nonlinear Schrödinger equations).
Citation: |
[1] | T. Cazenave, Semilinear Schrödinger Equations, vol. 10, American Mathematical Soc., 2003. doi: 10.1090/cln/010. |
[2] | J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^3$, Ann. of Math., 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767. |
[3] | J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear schrödinger equation on $\mathbb{R}^{3}$, Comm. Pure Appl. Math., 57 (2004), 987-1014. doi: 10.1002/cpa.20029. |
[4] | B. Dodson, Global well-posedness for the defocusing, cubic nonlinear Schrödinger equation with initial data in a critical space, arXiv preprint, arXiv: 2004.09618. |
[5] | P. Germain, N. Masmoudi and J. Shatah, Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN, 2009 (2009), 414-432. doi: 10.1093/imrn/rnn135. |
[6] | M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, I, Comm. Math. Phys., 324 (2013), 601-636. doi: 10.1007/s00220-013-1818-7. |
[7] | N. Hayashi and M. Tsutsumi, $L^\infty(\mathbf{R}^n)$-decay of classical solutions for nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 309-327. doi: 10.1017/S0308210500019235. |
[8] | J.-L. Journé, A. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604. doi: 10.1002/cpa.3160440504. |
[9] | C. Kenig and F. Merle, Scattering for $\dot{H}^{1/2}$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Transactions of the American Mathematical Society, 362 (2010), 1937-1962. doi: 10.1090/S0002-9947-09-04722-9. |
[10] | S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332. doi: 10.1002/cpa.3160380305. |
[11] | S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math., 36 (1983), 133-141. doi: 10.1002/cpa.3160360106. |
[12] | J.-E. Lin and W. A. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Functional Analysis, 30 (1978), 245-263. doi: 10.1016/0022-1236(78)90073-3. |
[13] | F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér., 42 (2009), 261-290. doi: 10.24033/asens.2096. |
[14] | J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46 (1982), 409-425. doi: 10.1016/0022-0396(82)90102-4. |
[15] | T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106, American Mathematical Soc., 2006. doi: 10.1090/cbms/106. |
[16] | X. Yu, Global well-posedness and scattering for the defocusing $\dot{H}^{1/2}$-critical nonlinear Schrödinger equation in $\mathbb{R}^{2}$, arXiv preprint, arXiv: 1805.03230. |