-
Previous Article
Proximality of multidimensional $ \mathscr{B} $-free systems
- DCDS Home
- This Issue
-
Next Article
Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions
Decay estimates for nonlinear Schrödinger equations
1. | Academy of Mathematics and Systems Science, CAS, China |
2. | University of Maryland, USA |
In this short note, we present some decay estimates for nonlinear solutions of 3d quintic, 3d cubic NLS, and 2d quintic NLS (nonlinear Schrödinger equations).
References:
[1] |
T. Cazenave, Semilinear Schrödinger Equations, vol. 10, American Mathematical Soc., 2003.
doi: 10.1090/cln/010. |
[2] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^3$, Ann. of Math., 167 (2008), 767-865.
doi: 10.4007/annals.2008.167.767. |
[3] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global existence and scattering for rough solutions of a nonlinear schrödinger equation on $\mathbb{R}^{3}$, Comm. Pure Appl. Math., 57 (2004), 987-1014.
doi: 10.1002/cpa.20029. |
[4] |
B. Dodson, Global well-posedness for the defocusing, cubic nonlinear Schrödinger equation with initial data in a critical space, arXiv preprint, arXiv: 2004.09618. Google Scholar |
[5] |
P. Germain, N. Masmoudi and J. Shatah,
Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN, 2009 (2009), 414-432.
doi: 10.1093/imrn/rnn135. |
[6] |
M. Grillakis and M. Machedon,
Pair excitations and the mean field approximation of interacting bosons, I, Comm. Math. Phys., 324 (2013), 601-636.
doi: 10.1007/s00220-013-1818-7. |
[7] |
N. Hayashi and M. Tsutsumi,
$L^\infty(\mathbf{R}^n)$-decay of classical solutions for nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 309-327.
doi: 10.1017/S0308210500019235. |
[8] |
J.-L. Journé, A. Soffer and C. D. Sogge,
Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604.
doi: 10.1002/cpa.3160440504. |
[9] |
C. Kenig and F. Merle,
Scattering for $\dot{H}^{1/2}$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Transactions of the American Mathematical Society, 362 (2010), 1937-1962.
doi: 10.1090/S0002-9947-09-04722-9. |
[10] |
S. Klainerman,
Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332.
doi: 10.1002/cpa.3160380305. |
[11] |
S. Klainerman and G. Ponce,
Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math., 36 (1983), 133-141.
doi: 10.1002/cpa.3160360106. |
[12] |
J.-E. Lin and W. A. Strauss,
Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Functional Analysis, 30 (1978), 245-263.
doi: 10.1016/0022-1236(78)90073-3. |
[13] |
F. Planchon and L. Vega,
Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér., 42 (2009), 261-290.
doi: 10.24033/asens.2096. |
[14] |
J. Shatah,
Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46 (1982), 409-425.
doi: 10.1016/0022-0396(82)90102-4. |
[15] |
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106, American Mathematical Soc., 2006.
doi: 10.1090/cbms/106. |
[16] |
X. Yu, Global well-posedness and scattering for the defocusing $\dot{H}^{1/2}$-critical nonlinear Schrödinger equation in $\mathbb{R}^{2}$, arXiv preprint, arXiv: 1805.03230. Google Scholar |
show all references
References:
[1] |
T. Cazenave, Semilinear Schrödinger Equations, vol. 10, American Mathematical Soc., 2003.
doi: 10.1090/cln/010. |
[2] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^3$, Ann. of Math., 167 (2008), 767-865.
doi: 10.4007/annals.2008.167.767. |
[3] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global existence and scattering for rough solutions of a nonlinear schrödinger equation on $\mathbb{R}^{3}$, Comm. Pure Appl. Math., 57 (2004), 987-1014.
doi: 10.1002/cpa.20029. |
[4] |
B. Dodson, Global well-posedness for the defocusing, cubic nonlinear Schrödinger equation with initial data in a critical space, arXiv preprint, arXiv: 2004.09618. Google Scholar |
[5] |
P. Germain, N. Masmoudi and J. Shatah,
Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN, 2009 (2009), 414-432.
doi: 10.1093/imrn/rnn135. |
[6] |
M. Grillakis and M. Machedon,
Pair excitations and the mean field approximation of interacting bosons, I, Comm. Math. Phys., 324 (2013), 601-636.
doi: 10.1007/s00220-013-1818-7. |
[7] |
N. Hayashi and M. Tsutsumi,
$L^\infty(\mathbf{R}^n)$-decay of classical solutions for nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), 309-327.
doi: 10.1017/S0308210500019235. |
[8] |
J.-L. Journé, A. Soffer and C. D. Sogge,
Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604.
doi: 10.1002/cpa.3160440504. |
[9] |
C. Kenig and F. Merle,
Scattering for $\dot{H}^{1/2}$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Transactions of the American Mathematical Society, 362 (2010), 1937-1962.
doi: 10.1090/S0002-9947-09-04722-9. |
[10] |
S. Klainerman,
Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321-332.
doi: 10.1002/cpa.3160380305. |
[11] |
S. Klainerman and G. Ponce,
Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math., 36 (1983), 133-141.
doi: 10.1002/cpa.3160360106. |
[12] |
J.-E. Lin and W. A. Strauss,
Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Functional Analysis, 30 (1978), 245-263.
doi: 10.1016/0022-1236(78)90073-3. |
[13] |
F. Planchon and L. Vega,
Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér., 42 (2009), 261-290.
doi: 10.24033/asens.2096. |
[14] |
J. Shatah,
Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46 (1982), 409-425.
doi: 10.1016/0022-0396(82)90102-4. |
[15] |
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, vol. 106, American Mathematical Soc., 2006.
doi: 10.1090/cbms/106. |
[16] |
X. Yu, Global well-posedness and scattering for the defocusing $\dot{H}^{1/2}$-critical nonlinear Schrödinger equation in $\mathbb{R}^{2}$, arXiv preprint, arXiv: 1805.03230. Google Scholar |
[1] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[2] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[3] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[4] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[5] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[6] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[7] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[8] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[9] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[10] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[11] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[12] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[13] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[14] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[15] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[16] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[17] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[18] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]