In this article, we consider a non-local variant of the Kuramoto-Sivashinsky equation in three dimensions (2D interface). Besides showing the global wellposedness of this equation we also obtain some qualitative properties of the solutions. In particular, we prove that the solutions become analytic in the spatial variable for positive time, the existence of a compact global attractor and an upper bound on the number of spatial oscillations of the solutions. We observe that such a bound is particularly interesting due to the chaotic behavior of the solutions.
Citation: |
Figure 3. Numerical solution profile along $ x $-direction for $ y = 0 $ of (17) with $ \beta = 2, \delta = 0.5, \epsilon = 1 $ and the same initial data as in Figure 2 at $ t = 0, 20, 40 $
Figure 4. Numerical solution profile along $ y $-direction for $ x = \pi/2 $ of (17) with $ \beta = 2, \delta = 0.5, \epsilon = 1 $ and the same initial data as in Figure 2 at $ t = 0, 20, 40 $
[1] | J. C. Bronski and T. N. Gambill, Uncertainty estimates and ${L}^2$ bounds for the Kuramoto-Sivashinsky equation, Nonlinearity, 19 (2006), 2023-2039. doi: 10.1088/0951-7715/19/9/002. |
[2] | J. Burczak and R. Granero-Belinchón, On a generalized doubly parabolic Keller–Segel system in one spatial dimension, Mathematical Models and Methods in Applied Sciences, 26 (2016), 111-160. |
[3] | B. I. Cohen, J. Krommes, W. Tang and and M. Rosenbluth, Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nuclear fusion, 16 (1976), 971-992. doi: 10.1088/0029-5515/16/6/009. |
[4] | P. Collet, J.-P. Eckmann, H. Epstein and and J. Stubbe, Analyticity for the Kuramoto-Sivashinsky equation, Physica D: Nonlinear Phenomena, 67 (1993), 321-326. doi: 10.1016/0167-2789(93)90168-Z. |
[5] | P. Collet, J.-P. Eckmann, H. Epstein and and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation, Communications in Mathematical Physics, 152 (1993), 203-214. doi: 10.1007/BF02097064. |
[6] | A. V. Coward and P. Hall., On the nonlinear interfacial instability of rotating core-annual flow, Theoretical and Computational Fluid Dynamics, 5 (1993), 269-289. doi: 10.1007/BF00271423. |
[7] | S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics, 176 (2002), 430-455. doi: 10.1006/jcph.2002.6995. |
[8] | C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, Journal of Functional Analysis, 87 (1989), 359-369. doi: 10.1016/0022-1236(89)90015-3. |
[9] | A. L. Frenkel and K. Indireshkumar, Wavy film flows down an inclined plane: perturbation theory and general evolution equation for the film thickness, Physical Review E, 60 (1999), 4143-4157. doi: 10.1103/PhysRevE.60.4143. |
[10] | L. Giacomelli and F. Otto, New bounds for the Kuramoto-Sivashinsky equation, Communications on Pure and Applied Mathematics, 58 (2005), 297-318. doi: 10.1002/cpa.20031. |
[11] | A. Gonzalez and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane, Physical Review E, 53 (1996), 3573-3578. doi: 10.1103/PhysRevE.53.3573. |
[12] | J. Goodman, Stability of the Kuramoto-Sivashinsky and related systems, Communications on Pure and Applied Mathematics, 47 (1994), 293-306. doi: 10.1002/cpa.3160470304. |
[13] | R. Granero-Belinchón and J. K. Hunter, On a nonlocal analog of the Kuramoto-Sivashinsky equation, Nonlinearity, 28 (2015), 1103-1133. doi: 10.1088/0951-7715/28/4/1103. |
[14] | Z. Grujić, Spatial analyticity on the global attractor for the Kuramoto-Sivashinsky equation, Journal of Dynamics and Differential Equations, 12 (2000), 217-228. doi: 10.1023/A:1009002920348. |
[15] | J. S. Il'Yashenko, Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation, Journal of Dynamics and Differential Equations, 4 (1992), 585-615. doi: 10.1007/BF01048261. |
[16] | X. Ioakim and Y.-S. Smyrlis, Analyticity for Kuramoto-Sivashinsky type equations and related systems, Procedia IUTAM, 11 (2014), 69-80. doi: 10.1016/j.piutam.2014.01.049. |
[17] | M. James and M. Wilczek, Vortex dynamics and lagrangian statistics in a model for active turbulence, The European Physical Journal E, 41 (2018), 21-26. doi: 10.1140/epje/i2018-11625-8. |
[18] | A.-K. Kassam, and L.-N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM Journal on Scientific Computing, 26 (2005), 1214-1233. doi: 10.1137/S1064827502410633. |
[19] | Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progress of Theoretical Physics, 55 (1976), 356-369. doi: 10.1143/PTP.55.356. |
[20] | R. E. LaQuey, S. Mahajan, P. Rutherford and and W. Tang, Nonlinear saturation of the trapped-ion mode, Physical Review Letters, 34 (1975), 391-394. doi: 10.1103/physrevlett.34.391. |
[21] | Y. Lee and H. Chen, Nonlinear dynamical models of plasma turbulence, Physica Scripta, (1982), 41–47. doi: 10.1088/0031-8949/1982/T2A/005. |
[22] | D. Michelson and G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-II. numerical experiments, Acta Astronautica, 4 (1977), 1207-1221. doi: 10.1016/0094-5765(77)90097-2. |
[23] | B. Nicolaenko, B. Scheurer and and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors, Physica D: Nonlinear Phenomena, 16 (1985), 155-183. doi: 10.1016/0167-2789(85)90056-9. |
[24] | F. C. Pinto, Nonlinear stability and dynamical properties for a Kuramoto-Sivashinsky equation in space dimension two, Discrete and Continuous Dynamical Systems - A, 5 (1999), 117-136. doi: 10.3934/dcds.1999.5.117. |
[25] | F. C. Pinto, Analyticity and Gevrey class regularity for a Kuramoto-Sivashinsky equation in space dimension two, Applied mathematics letters, 14 (2001), 253-260. doi: 10.1016/S0893-9659(00)00145-2. |
[26] | G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I. derivation of basic equations, Acta astronautica, 4 (1977), 1177-1206. doi: 10.1016/0094-5765(77)90096-0. |
[27] | G. I. Sivashinsky and D. M. Michelson, On irregular wavy flow of a liquid film down a vertical plane, Progress of Theoretical Physics, 63 (1980), 2112-2114. doi: 10.1143/PTP.63.2112. |
[28] | R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, Springer-Verlag, 1997. doi: 10.1007/978-1-4612-0645-3. |
[29] | R. Tomlin, D. Papageorgiou and and G. Pavliotis, Three-dimensional wave evolution on electrified falling films, Journal of Fluid Mechanics, 822 (2017), 54-79. doi: 10.1017/jfm.2017.250. |
[30] | J. Topper and T. Kawahara, Approximate equations for long nonlinear waves on a viscous fluid, Journal of the Physical society of Japan, 44 (1978), 663-666. doi: 10.1143/JPSJ.44.663. |
[31] | D. Tseluiko and D. Papageorgiou, Dynamics of an electrostatically modified Kuramoto-Sivashinsky–Korteweg–de Vries equation arising in falling film flows, Physical Review E, 82 (2010), 016322, 22 pp. doi: 10.1103/PhysRevE.82.016322. |
[32] | D. Tseluiko and D. T. Papageorgiou, A global attracting set for nonlocal Kuramoto-Sivashinsky equations arising in interfacial electrohydrodynamics, European Journal of Applied Mathematics, 17 (2006), 677-703. doi: 10.1017/S0956792506006760. |
[33] | D. Tseluiko and D. T. Papageorgiou, Wave evolution on electrified falling films, Journal of Fluid Mechanics, 556 (2006), 361-386. doi: 10.1017/S0022112006009712. |
Initial data (16)
Numerical solution of (17) for
Numerical solution profile along
Numerical solution profile along