-
Previous Article
Approximation properties of Lüroth expansions
- DCDS Home
- This Issue
-
Next Article
Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching
Global generalized solutions to a chemotaxis model of capillary-sprout growth during tumor angiogenesis
School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, P. R. China |
$ \begin{equation*} \begin{split} \left\{ {\begin{array}{*{20}{l}} {{u_t} = \Delta u - \nabla \cdot (u\nabla v) + \nabla \cdot (u\nabla w),}&{x \in \Omega ,t > 0,} \\ {{v_t} = \Delta v + \nabla \cdot (v\nabla w) - v + u,}&{x \in \Omega ,t > 0,} \\ {0 = \Delta w - w + u,}&{x \in \Omega ,t > 0,} \end{array}} \right. \end{split} \end{equation*} $ |
$ \int_0^T\int_{\Omega}{\frac{{{u_\varepsilon }v_\varepsilon^p}}{{1 +\varepsilon {u_\varepsilon }}}} $ |
$ p>1 $ |
$ \int_0^T \int_\Omega {\frac{{{u_\varepsilon }}}{{1+\varepsilon {u_\varepsilon }}}\ln^{k}({u_\varepsilon } + 1)}dxdt $ |
$ k\in(1,2) $ |
References:
[1] |
X. Bai and S. Liu,
A new criterion to a two-chemical substances chemotaxis system with critical dimension, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3717-3721.
doi: 10.3934/dcdsb.2018074. |
[2] |
X. Cao,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 412 (2014), 181-188.
doi: 10.1016/j.jmaa.2013.10.061. |
[3] |
M. A. J. Chaplain and H. M. Byrne, Mathematical modelling of wound healing and tumour growth: Two sides of the same coin, Wounds, 8 (1996), 42-48. Google Scholar |
[4] |
X. Chen, A. Jüngel and J.-G. Liu,
A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.
doi: 10.1007/s10440-013-9858-8. |
[5] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo,
Global existence and convergence to steady states in a chemorepulsion system, Polish Acad. Sci. Inst. Math., Warsaw, 81 (2008), 105-117.
doi: 10.4064/bc81-0-7. |
[6] | M. Eisenbach, Chemotaxis, Imperial College Press, London, 2004. Google Scholar |
[7] |
K. Fujie and S. Ishida,
Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148.
doi: 10.1016/j.jde.2017.02.031. |
[8] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24 (1997), 633-683.
|
[9] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for Chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[10] |
D. Horstmann and G. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[11] |
B. Hu and Y. Tao,
To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.
doi: 10.1142/S0218202516400091. |
[12] |
H.-Y. Jin,
Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.
doi: 10.1016/j.jmaa.2014.09.049. |
[13] |
H.-Y. Jin and Z.-A. Wang,
Boundedness, blowup and critical mass phenomenon incompeting chemotaxis, J. Differential Equations, 260 (2016), 162-196.
doi: 10.1016/j.jde.2015.08.040. |
[14] |
H.-Y. Jin and Z.-A. Wang, Global dynamics of the attraction-repulsion Keller-Segel model in one dimension, Math. Methods Appl. Sci., 38 (2015), 444-457. Google Scholar |
[15] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[16] |
P. Laurençot, Global bounded and unbounded solutions to a chemotaxis system with indirect signal production, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6419-6444. Google Scholar |
[17] |
G. Li and Y. Tao, Analysis of a chemotaxis-convection model of capillary-sprout growth during tumor angiogenesis, J. Math. Anal. Appl., 481 (2020), 123474, 14 pp.
doi: 10.1016/j.jmaa.2019.123474. |
[18] |
J. Liu and Z. A. Wang,
Classical solutions and steady states of an attraction-repulsion chemotaxis model in one dimension, J. Biol. Dyn., 6 (2012), 31-41.
doi: 10.1080/17513758.2011.571722. |
[19] |
P. Liu, J. Shi and Z. A. Wang,
Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.
doi: 10.3934/dcdsb.2013.18.2597. |
[20] |
M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner, Chemotactic signaling, microglia, and Alzheimer's disease senile plagues: Is there a connection?, Bull. Math. Biol., 65 (2003), 693-730. Google Scholar |
[21] |
M. E. Orme and M. A. J. Chaplain,
A mathematical model of the first steps of tumour-related angiogenesis: Capillary sprout formation and secondary branching, J. Math. Appl. Med. Biol., 13 (1996), 73-98.
doi: 10.1093/imammb/13.2.73. |
[22] |
K. Osaki and A. Yagi,
Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.
|
[23] |
N. Paweletz and M. Knierim,
Tumor related angiogenesis, Crit. Rev. Oncol. Hematol., 9 (1989), 197-242.
doi: 10.1016/S1040-8428(89)80002-2. |
[24] |
M. M. Sholley, G. P. Ferguson, H. R. Seibel, J. L. Montour and J. D. Wilson, Mechanisms of neovascularization: Vascular sprouting can occur without proliferation of endothelial cells, Lab. Invest., 51 (1984), 624-634. Google Scholar |
[25] |
C. Stinner, C. Surulescu and M. Winkler,
Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM. J. Math. Anal., 46 (2014), 1969-2007.
doi: 10.1137/13094058X. |
[26] |
R. M. Sutherland, Cell and environment interactions in tumor microregions: The multicell spheroid model, Science, 240 (1988), 177-184. Google Scholar |
[27] |
Y. Tao and Z.-A. Wang,
Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.
doi: 10.1142/S0218202512500443. |
[28] |
Y. Tao and M. Winkler,
Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678.
doi: 10.4171/JEMS/749. |
[29] |
J. I. Tello and M. Winkler,
A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.
doi: 10.1080/03605300701319003. |
[30] |
J. I. Tello and D. Wrzosek,
Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.
doi: 10.1142/S0218202516400108. |
[31] |
M. Winkler and K. C. Djie,
Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.
doi: 10.1016/j.na.2009.07.045. |
[32] |
M. Winkler,
Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.
doi: 10.1016/j.jmaa.2008.07.071. |
[33] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[34] |
M. Winkler,
Global mass-preserving solutions in a two-dimensional chemotaxis-stokes system with rotational flux components, J. Evol. Equ., 18 (2018), 1267-1289.
doi: 10.1007/s00028-018-0440-8. |
[35] |
M. Winkler,
Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM. J. Math. Anal., 47 (2015), 3092-3115.
doi: 10.1137/140979708. |
[36] |
M. Winkler,
Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions, Math. Models Methods Appl. Sci., 29 (2019), 373-418.
doi: 10.1142/S021820251950012X. |
show all references
References:
[1] |
X. Bai and S. Liu,
A new criterion to a two-chemical substances chemotaxis system with critical dimension, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3717-3721.
doi: 10.3934/dcdsb.2018074. |
[2] |
X. Cao,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 412 (2014), 181-188.
doi: 10.1016/j.jmaa.2013.10.061. |
[3] |
M. A. J. Chaplain and H. M. Byrne, Mathematical modelling of wound healing and tumour growth: Two sides of the same coin, Wounds, 8 (1996), 42-48. Google Scholar |
[4] |
X. Chen, A. Jüngel and J.-G. Liu,
A note on Aubin-Lions-Dubinskii lemmas, Acta Appl. Math., 133 (2014), 33-43.
doi: 10.1007/s10440-013-9858-8. |
[5] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo,
Global existence and convergence to steady states in a chemorepulsion system, Polish Acad. Sci. Inst. Math., Warsaw, 81 (2008), 105-117.
doi: 10.4064/bc81-0-7. |
[6] | M. Eisenbach, Chemotaxis, Imperial College Press, London, 2004. Google Scholar |
[7] |
K. Fujie and S. Ishida,
Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148.
doi: 10.1016/j.jde.2017.02.031. |
[8] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24 (1997), 633-683.
|
[9] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for Chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[10] |
D. Horstmann and G. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[11] |
B. Hu and Y. Tao,
To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.
doi: 10.1142/S0218202516400091. |
[12] |
H.-Y. Jin,
Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.
doi: 10.1016/j.jmaa.2014.09.049. |
[13] |
H.-Y. Jin and Z.-A. Wang,
Boundedness, blowup and critical mass phenomenon incompeting chemotaxis, J. Differential Equations, 260 (2016), 162-196.
doi: 10.1016/j.jde.2015.08.040. |
[14] |
H.-Y. Jin and Z.-A. Wang, Global dynamics of the attraction-repulsion Keller-Segel model in one dimension, Math. Methods Appl. Sci., 38 (2015), 444-457. Google Scholar |
[15] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[16] |
P. Laurençot, Global bounded and unbounded solutions to a chemotaxis system with indirect signal production, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6419-6444. Google Scholar |
[17] |
G. Li and Y. Tao, Analysis of a chemotaxis-convection model of capillary-sprout growth during tumor angiogenesis, J. Math. Anal. Appl., 481 (2020), 123474, 14 pp.
doi: 10.1016/j.jmaa.2019.123474. |
[18] |
J. Liu and Z. A. Wang,
Classical solutions and steady states of an attraction-repulsion chemotaxis model in one dimension, J. Biol. Dyn., 6 (2012), 31-41.
doi: 10.1080/17513758.2011.571722. |
[19] |
P. Liu, J. Shi and Z. A. Wang,
Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2597-2625.
doi: 10.3934/dcdsb.2013.18.2597. |
[20] |
M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner, Chemotactic signaling, microglia, and Alzheimer's disease senile plagues: Is there a connection?, Bull. Math. Biol., 65 (2003), 693-730. Google Scholar |
[21] |
M. E. Orme and M. A. J. Chaplain,
A mathematical model of the first steps of tumour-related angiogenesis: Capillary sprout formation and secondary branching, J. Math. Appl. Med. Biol., 13 (1996), 73-98.
doi: 10.1093/imammb/13.2.73. |
[22] |
K. Osaki and A. Yagi,
Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.
|
[23] |
N. Paweletz and M. Knierim,
Tumor related angiogenesis, Crit. Rev. Oncol. Hematol., 9 (1989), 197-242.
doi: 10.1016/S1040-8428(89)80002-2. |
[24] |
M. M. Sholley, G. P. Ferguson, H. R. Seibel, J. L. Montour and J. D. Wilson, Mechanisms of neovascularization: Vascular sprouting can occur without proliferation of endothelial cells, Lab. Invest., 51 (1984), 624-634. Google Scholar |
[25] |
C. Stinner, C. Surulescu and M. Winkler,
Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM. J. Math. Anal., 46 (2014), 1969-2007.
doi: 10.1137/13094058X. |
[26] |
R. M. Sutherland, Cell and environment interactions in tumor microregions: The multicell spheroid model, Science, 240 (1988), 177-184. Google Scholar |
[27] |
Y. Tao and Z.-A. Wang,
Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.
doi: 10.1142/S0218202512500443. |
[28] |
Y. Tao and M. Winkler,
Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678.
doi: 10.4171/JEMS/749. |
[29] |
J. I. Tello and M. Winkler,
A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.
doi: 10.1080/03605300701319003. |
[30] |
J. I. Tello and D. Wrzosek,
Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.
doi: 10.1142/S0218202516400108. |
[31] |
M. Winkler and K. C. Djie,
Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.
doi: 10.1016/j.na.2009.07.045. |
[32] |
M. Winkler,
Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.
doi: 10.1016/j.jmaa.2008.07.071. |
[33] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[34] |
M. Winkler,
Global mass-preserving solutions in a two-dimensional chemotaxis-stokes system with rotational flux components, J. Evol. Equ., 18 (2018), 1267-1289.
doi: 10.1007/s00028-018-0440-8. |
[35] |
M. Winkler,
Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM. J. Math. Anal., 47 (2015), 3092-3115.
doi: 10.1137/140979708. |
[36] |
M. Winkler,
Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions, Math. Models Methods Appl. Sci., 29 (2019), 373-418.
doi: 10.1142/S021820251950012X. |
[1] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[2] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[3] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[4] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[5] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[6] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[7] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[8] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[9] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[10] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[11] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[12] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[13] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[14] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[15] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[16] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[17] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[18] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[19] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[20] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]