# American Institute of Mathematical Sciences

September  2021, 41(9): 4065-4083. doi: 10.3934/dcds.2021028

## Global generalized solutions to a chemotaxis model of capillary-sprout growth during tumor angiogenesis

 School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, P. R. China

* Corresponding author: Xueli Bai

Received  August 2020 Revised  December 2020 Published  January 2021

This paper considers a chemotaxis-convection model of capillary-sprout growth during tumor angiogenesis
 $\begin{equation*} \begin{split} \left\{ {\begin{array}{*{20}{l}} {{u_t} = \Delta u - \nabla \cdot (u\nabla v) + \nabla \cdot (u\nabla w),}&{x \in \Omega ,t > 0,} \\ {{v_t} = \Delta v + \nabla \cdot (v\nabla w) - v + u,}&{x \in \Omega ,t > 0,} \\ {0 = \Delta w - w + u,}&{x \in \Omega ,t > 0,} \end{array}} \right. \end{split} \end{equation*}$
under Neumann initial-boundary conditions in a smooth bounded domain. In the two-dimensional setting, introducing a generalized solution concept according to (Winkler, 2015 [35]) and constructing an appropriate regularized system, we prove the global existence of at least one such solution with suitably regular initial data by an approximation procedure. To overcome the difficulty in taking the limit to its regularized system, we establish some technical estimates related to several energy integrals with special structures like
 $\int_0^T\int_{\Omega}{\frac{{{u_\varepsilon }v_\varepsilon^p}}{{1 +\varepsilon {u_\varepsilon }}}}$
,
 $p>1$
and
 $\int_0^T \int_\Omega {\frac{{{u_\varepsilon }}}{{1+\varepsilon {u_\varepsilon }}}\ln^{k}({u_\varepsilon } + 1)}dxdt$
,
 $k\in(1,2)$
.
Citation: Xueli Bai, Wenji Zhang. Global generalized solutions to a chemotaxis model of capillary-sprout growth during tumor angiogenesis. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4065-4083. doi: 10.3934/dcds.2021028
##### References:

show all references

##### References:
 [1] Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129 [2] Risei Kano, Akio Ito. The existence of time global solutions for tumor invasion models with constraints. Conference Publications, 2011, 2011 (Special) : 774-783. doi: 10.3934/proc.2011.2011.774 [3] Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050 [4] Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324 [5] Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 203-209. doi: 10.3934/dcdss.2020011 [6] Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071 [7] Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002 [8] Mihaela Negreanu. Global existence and asymptotic behavior of solutions to a chemotaxis system with chemicals and prey-predator terms. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3335-3356. doi: 10.3934/dcdsb.2020064 [9] Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni. On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 45-66. doi: 10.3934/mbe.2017004 [10] T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125 [11] Manuel Delgado, Inmaculada Gayte, Cristian Morales-Rodrigo, Antonio Suárez. On a chemotaxis model with competitive terms arising in angiogenesis. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 177-202. doi: 10.3934/dcdss.2020010 [12] Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 407-420. doi: 10.3934/mbe.2017025 [13] Miao Liu, Weike Wang. Global existence and pointwise estimates of solutions for the multidimensional generalized Boussinesq-type equation. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1203-1222. doi: 10.3934/cpaa.2014.13.1203 [14] J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure & Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467 [15] Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125 [16] Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805 [17] Meili Li, Maoan Han, Chunhai Kou. The existence of positive periodic solutions of a generalized. Mathematical Biosciences & Engineering, 2008, 5 (4) : 803-812. doi: 10.3934/mbe.2008.5.803 [18] Urszula Ledzewicz, Heinz Schättler. On the optimality of singular controls for a class of mathematical models for tumor anti-angiogenesis. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 691-715. doi: 10.3934/dcdsb.2009.11.691 [19] Michael W. Smiley, Howard A. Levine, Marit Nilsen Hamilton. Numerical simulation of capillary formation during the onset of tumor angiogenesis. Conference Publications, 2003, 2003 (Special) : 817-826. doi: 10.3934/proc.2003.2003.817 [20] Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105